Shrub encroachment of grassland and woodland ecosystems can alter wildfire behaviour and threaten ecological values. Australian fire managers are using mechanical mastication to reduce the fire risk in encroached ecosystems but are yet to evaluate its effectiveness or ecological impact. We asked: (1) How does fuel load and structure change following mastication?; (2) Is mastication likely to affect wildfire rates of spread and flame heights?; and (3) What is the impact of mastication on flora species richness and diversity? At thirteen paired sites (masticated versus control; n = 26), located in Victoria, Australia, we measured fuel properties (structure, load and hazard) and floristic diversity (richness and Shannon’s H) in 400 mP2 plots. To quantify the effects of mastication, data were analysed using parametric and non-parametric paired sample techniques. Masticated sites were grouped into two categories, 0–2 and 3–4 years post treatment. Fire behaviour was predicted using the Dry Eucalypt Forest Fire Model. Mastication with follow-up herbicide reduced the density of taller shrubs, greater than 50 cm in height, for at least 4 years. The most recently masticated sites (0–2 years) had an almost 3-fold increase in dead fine fuel loads and an 11-fold increase in dead coarse fuel loads on the forest floor compared with the controls. Higher dead coarse fuel loads were still evident after 3–4 years. Changes to fuel properties produced a reduction in predicted flame heights from 22 m to 5–6 m under severe fire weather conditions, but no change in the predicted fire rate of spread. Reductions in flame height would be beneficial for wildfire suppression and could reduce the damage to property from wildfires. Mastication did not have a meaningful effect on native species diversity, but promoted the abundance of some exotic species.
Mechanical mastication is a fuel management strategy that modifies vegetation structure to reduce the impact of wildfire. Although past research has quantified immediate changes to fuel post-mastication, few studies consider longer-term fuel trajectories and climatic drivers of this change. Our study sought to quantify changes to fuel loads and structure over time following mastication and as a function of landscape aridity. Measurements were made at 63 sites in Victoria, Australia. All sites had been masticated within the previous 9 years to remove over-abundant shrubs and small trees. We used generalised additive models to explore trends over time and along an aridity gradient. Surface fuel loads were highest immediately post-mastication and in the most arid sites. The surface fine fuel load declined over time, whereas the surface coarse fuel load remained high; these trends occurred irrespective of landscape aridity. Standing fuel (understorey and midstorey vegetation) regenerated consistently, but shrub cover was still substantially low at 9 years post-mastication. Fire managers need to consider the trade-off between a persistently higher surface coarse fuel load and reduced shrub cover to evaluate the efficacy of mastication for fuel management. Coarse fuel may increase soil heating and smoke emissions, but less shrub cover will likely moderate fire behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.