α2A- and α2C-adrenoceptors (ARs) are the primary α2-AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer’s disease. This review will emphasize the importance and relevance of the α2C-AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.
Depression involves deficits in monoaminergic neurotransmission. Differential roles for α2A, B and C subtypes of the α2-adrenoceptor (AR) are evident, with selective α2C-AR antagonists purported to have antidepressant and procognitive properties. However, this has not been demonstrated in a genetic animal model of depression. The role of the α2C-AR in modulating two key depression-related behaviours in the Flinders Sensitive Line (FSL) rat was studied using a dose-response analysis following subcutaneous administration with the selective α2C-AR antagonist ORM-10921 (0.03; 0.3 mg/kg), the nonselective α2-AR antagonist idazoxan (3 mg/kg), or vehicle once daily for 14 days. Behaviour in the novel object recognition test, forced swim test (FST) and locomotor activity test was assessed. To ratify the validity of the FSL model, the reference tricyclic antidepressant imipramine (15 mg/kg, intraperitoneally) was used as a comparator drug in the FST. FSL rats demonstrated significantly increased immobility and recognition memory deficits versus Flinders Resistant Line controls, with imipramine significantly reversing said immobility. Similarly, ORM-10921 at both doses but not idazoxan significantly reversed immobility in the FST as well as attenuated cognitive deficits in FSL animals. We conclude that selective α2C-AR antagonism has potential as a novel therapeutic strategy in the treatment of depression and cognitive dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.