The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.
Tryptophan and indole derivatives are common precursors in many natural biosynthetic pathways. In recent years it has been shown that the substrate specificity of tryptophan halogenases is much more relaxed than previously thought. Using the tryptophan 7‐halogenase PrnA, the tryptophan 6‐halogenase ThdH, and the tryptophan 5‐halogenase PyrH we achieved the regioselective mono‐halogenation of indole‐3‐acetic acid (IAA), which has not been reported as a substrate of tryptophan halogenases to date. The tryptophan 5‐halogenase gene was introduced into Arabidopsis thaliana leading to the formation of 5‐chlorotryptophan, 5‐chloroindole‐3‐acetonitrile and 5‐chloro‐3‐indole acetic acid by A. thaliana. PyrH activity could also be demonstrated for the plant‐produced halogenase in vitro. These results show the potential of flavin‐dependent halogenases to generate novel halogenated auxins or other secondary metabolites in vitro and in vivo by plants.
Nicotiana species of the section Alatae emit a characteristic floral scent comprising the' cineole cassette' monoterpenes 1,8-cineole, limonene, myrcene, β-pinene, α-pinene, sabinene and α-terpineol. All previously isolated 'cineole cassette'-monoterpene synthase genes are multi product enzymes that synthesize the seven compounds of the 'cineole cassette'. Interestingly, so far this 'alatoid' trait was only shared with the eponymous species Nicotiana suaveolens of the sister section Suaveolentes. To determine the origin of the 'cineole cassette' monoterpene phenotype other potential parent species of section Noctiflorae or Petunoides as well as of the distantly related section Trigonophyllae were analysed. A monoterpene synthase producing the set of 'cineole cassette' compounds was isolated from N. noctiflorae. N. obtusifolia emitted solely 1,8-cineole and no monoterpenes were found in floral scents of N. petunoides and N. palmeri. Interestingly, the phylogenetic analysis clustered the new gene of N. noctiflora closely to the terpineol synthase genes of e.g. N. alata rather than to cineole synthase genes of e.g. N. forgetiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.