Tissue:plasma partition coefficients are key parameters in physiologically based pharmacokinetic (PBPK) models, yet the coefficients are challenging to measure in vivo. Several mechanistic-based equations have been developed to predict partition coefficients using tissue composition information and the compound's physicochemical properties, but it is not clear which, if any, of the methods is most appropriate under given circumstances. Complicating the evaluation, each prediction method was developed, and is typically employed, using a different set of tissue composition information, thereby making a controlled comparison impossible. This study proposed a standardized tissue composition for humans that can be used as a common input for each of the five frequently used prediction methods. These methods were implemented in R and were used to predict partition coefficients for 11 drugs, classified as strong bases, weak bases, acids, neutrals, and zwitterions. PBPK models developed in R (mrgsolve) for each drug and each set of partition coefficient predictions were compared with respective observed plasma concentration data. Percent root mean square error and half-life percent error were used to evaluate the accuracy of the PBPK model predictions using each partition coefficient method as summarized by strong bases, weak bases, acids, neutrals, and zwitterions characterization. The analysis indicated that no partition coefficient method consistently yielded the most accurate PBPK model predictions. As such, PBPK model predictions using all partition coefficient methods should be considered during drug development. SIGNIFICANCE STATEMENT Several mechanistic-based methods exist to predict tissue:plasma partition coefficients critical to PBPK modeling. Controlled comparisons are confounded by the use of different tissue composition values for each method; a standardized tissue composition was proposed. Resulting assessments indicated that no method was consistently superior; therefore, sensitivity of PBPK predictions to each method may be warranted prior to model optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.