Understanding the impact of crossover on performance is a major problem in the theory of genetic algorithms (GAs). We present new insight on working principles of crossover by analyzing the performance of crossover-based GAs on the simple functions OneMax and Jump.First, we assess the potential speedup by crossover when combined with a fitness-invariant bit shuffling operator that simulates a lineage of independent evolution on a function of unitation. Theoretical and empirical results show drastic speedups for both functions.Second, we consider a simple GA without shuffling and investigate the interplay of mutation and crossover on Jump. If the crossover probability is small, subsequent mutations create sufficient diversity, even for very small populations. Contrarily, with high crossover probabilities crossover tends to lose diversity more quickly than mutation can create it. This has a drastic impact on the performance on Jump. We complement our theoretical findings by Monte Carlo simulations on the population diversity.
The all-pairs shortest path problem is the first non-artificial problem for which it was shown that adding crossover can significantly speed up a mutation-only evolutionary algorithm. Recently, the analysis of this algorithm was refined and it was shown to have an expected optimization time (w. r. t. the number of fitness evaluations) of Θ(n 3.25 (log n) 0.25 ).In contrast to this simple algorithm, evolutionary algorithms used in practice usually employ refined recombination strategies in order to avoid the creation of infeasible offspring. We study extensions of the basic algorithm by two such concepts which are central in recombination, namely repair mechanisms and parent selection. We show that repairing infeasible offspring leads to an improved expected optimization time of O(n 3.2 (log n) 0.2 ). As a second part of our study we prove that choosing parents that guarantee feasible offspring results in an even better optimization time of O(n 3 log n).Both results show that already simple adjustments of the recombination operator can asymptotically improve the runtime of evolutionary algorithms. * This work greatly benefited from various discussions at the Dagstuhl seminar 08051 on Theory of Evolutionary Algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.