The elephant’s trunk is multifunctional: It must be flexible to wrap around vegetation, but tough to knock down trees and resist attack. How can one appendage satisfy both constraints? In this combined experimental and theoretical study, we challenged African elephants to reach far-away objects with only horizontal extensions of their trunk. Surprisingly, the trunk does not extend uniformly, but instead exhibits a dorsal “joint” that stretches 15% more than the corresponding ventral section. Using material testing with the skin of a deceased elephant, we show that the asymmetry is due in part to patterns of the skin. The dorsal skin is folded and 15% more pliable than the wrinkled ventral skin. Skin folds protect the dorsal section and stretch to facilitate downward wrapping, the most common gripping style when picking up items. The elephant’s skin is also sufficiently stiff to influence its mechanics: At the joint, the skin requires 13 times more energy to stretch than the corresponding length of muscle. The use of wrinkles and folds to modulate stiffness may provide a valuable concept for both biology and soft robotics.
Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin. We report structure at the macro and micro scales, from the thickness of the dermis to the interaction of 10 µm thick collagen fibers. We analyzed several sites along the length of the trunk, to compare and contrast the dorsal-ventral and proximal-distal skin morphologies and compositions. We find the dorsal skin of the elephant trunk can have keratin armor layers over 2mm thick, which is nearly 100 times the thickness of the equivalent layer in human skin. We also found that the structural support layer (the dermis) of elephant trunk contains a distribution of collagen-I (COL1) fibers in both perpendicular and parallel arrangement. The bimodal distribution of collagen is seen across all portions of the trunk, and is dissimilar from that of human skin where one orientation dominates within a body site. We hypothesize that this distribution of COL1 in the elephant trunk allows both flexibility and load-bearing capabilities. Additionally, when viewing individual fiber interaction of 10 µm thick collagen, we find the fiber crossings per unit volume are five times more common than in human skin, suggesting that the fibers are entangled. We surmise that these intriguing structures permit both flexibility and strength in the elephant trunk. The complex nature of the elephant skin may inspire the design of materials that can combine strength and flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.