The capacity to capture diversity in the usage of commercial technologies by autistic children influence future learning and assist in the creation of new technologies. The survey data was gathered from parents (n =304) in the United States, and it contains information on people of varying ages and abilities. In our study, we discovered that the pattern of access and use was similar across age groups, but better reading and language ability was associated with the use of more devices and interfaces. The reported fear of technology was associated with a greater amount of time spent utilizing technology. Autistic youngsters make extensive use of mainstream technology for a wide variety of leisure activities. According to the findings, technologies created with therapeutic objectives in mind may need to attain a high level of design excellence in order to engage people.
Oligonucleotides can be chemically modified for a variety of applications that include their use as biomaterials, in therapeutics, or as tools to understand biochemical processes, among others. This work focuses on the functionalization of oligonucleotides of RNA and DNA (12-or 14-nucleotides long) with methylbenzothiophene (BT), at the C2′-O-position, which led to unique structural features. Circular dichroism (CD) analyses showed that positioning the BT units on one strand led to significant thermal destabilization, while duplexes where each strand contained 4-BT rings formed a distinct arrangement with cooperativity/ interactions among the modifications (evidenced from the appearance of a band with positive ellipticity at 235 nm). Interestingly, the structural arrays displayed increased duplex stabilization (>10 °C higher than the canonical analogue) as a function of [Na + ] with an unexpected structural rearrangement at temperatures above 50 °C. Density functional theory−polarizable continuum model (DFT-PCM) calculations were carried out, and the analyses were in agreement with induced structural changes as a function of salt content. A model was proposed where the hydrophobic surface allows for an internal nucleobase rearrangement into a more thermodynamically stable structure, before undergoing full denaturation, with increased heat. While this behavior is not common, Bto Z-form duplex transitions can occur and are dependent on parameters that were probed in this work, i.e., temperature, nature of modification, or ionic content. To take advantage of this phenomenon, we probed the ability of the modified duplexes to be recognized by Zα (an RNA binding protein that targets Z-form RNA) via electrophoretic analysis and CD. Interestingly, the protein did not bind to canonical duplexes of DNA or RNA; however, it recognized the modified duplexes, in a [monovalent/divalent salt] dependent manner. Overall, the findings describe methodology to attain unique structural motifs of modified duplexes of DNA or RNA, and control their behavior as a function of salt concentration. While their affinity to RNA binding proteins, and the corresponding mechanism of action, requires further exploration, the tunable properties can be of potential use to study this, and other, types of modifications. The novel arrays that formed, under the conditions described herein, provide a useful way to explore the structure and behavior of modified oligonucleotides, in general.
Digitalization is a fundamental process that begun several decades ago, but which got a significant acceleration by Industry 4.0 and now directly affects all the process and industrial industries. It is anticipated to enable the Korean industry to improve its production efficiency and its sustainability. In particular, in the energy-intensive industries, such as the steel industry, digitalization concerns the application of the related technologies to the production processes, focusing on two main often overlapping directions: Advanced tools for the optimization of the production chain and specific technologies for low-carbon and sustainable production. Furthermore, the fast development of technology in the steel industry demands the continual updating of the skills of the industrial personnel. This article, the case study of Korean businesses, presents the backdrop of digitalization and several key concepts in the Korean iron and steel sector. The effect of digitalization on the steel sector personnel is examined along with the anticipated economic changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.