A new, to our knowledge, group contribution method based on the group contribution method of Mavrovouniotis is introduced for estimating the standard Gibbs free energy of formation (Delta(f)G'(o)) and reaction (Delta(r)G'(o)) in biochemical systems. Gibbs free energy contribution values were estimated for 74 distinct molecular substructures and 11 interaction factors using multiple linear regression against a training set of 645 reactions and 224 compounds. The standard error for the fitted values was 1.90 kcal/mol. Cross-validation analysis was utilized to determine the accuracy of the methodology in estimating Delta(r)G'(o) and Delta(f)G'(o) for reactions and compounds not included in the training set, and based on the results of the cross-validation, the standard error involved in these estimations is 2.22 kcal/mol. This group contribution method is demonstrated to be capable of estimating Delta(r)G'(o) and Delta(f)G'(o) for the majority of the biochemical compounds and reactions found in the iJR904 and iAF1260 genome-scale metabolic models of Escherichia coli and in the Kyoto Encyclopedia of Genes and Genomes and University of Minnesota Biocatalysis and Biodegradation Database. A web-based implementation of this new group contribution method is available free at http://sparta.chem-eng.northwestern.edu/cgi-bin/GCM/WebGCM.cgi.
http://systemsbiology.northwestern.edu/BNICE/publications.
Genome-scale metabolic models are an invaluable tool for analyzing metabolic systems as they provide a more complete picture of the processes of metabolism. We have constructed a genome-scale metabolic model of Escherichia coli based on the iJR904 model developed by the Palsson Laboratory at the University of California at San Diego. Group contribution methods were utilized to estimate the standard Gibbs free energy change of every reaction in the constructed model. Reactions in the model were classified based on the activity of the reactions during optimal growth on glucose in aerobic media. The most thermodynamically unfavorable reactions involved in the production of biomass in E. coli were identified as ATP phosphoribosyltransferase, ATP synthase, methylene-tetra-hydrofolate dehydrogenase, and tryptophanase. The effect of a knockout of these reactions on the production of biomass and the production of individual biomass precursors was analyzed. Changes in the distribution of fluxes in the cell after knockout of these unfavorable reactions were also studied. The methodologies and results discussed can be used to facilitate the refinement of the feasible ranges for cellular parameters such as species concentrations and reaction rate constants.
Background: Echocardiographic quantification of left ventricular (LV) ejection fraction (EF) relies on either manual or automated identification of endocardial boundaries followed by model-based calculation of end-systolic and end-diastolic LV volumes. Recent developments in artificial intelligence resulted in computer algorithms that allow near automated detection of endocardial boundaries and measurement of LV volumes and function. However, boundary identification is still prone to errors limiting accuracy in certain patients. We hypothesized that a fully automated machine learning algorithm could circumvent border detection and instead would estimate the degree of ventricular contraction, similar to a human expert trained on tens of thousands of images. Methods: Machine learning algorithm was developed and trained to automatically estimate LVEF on a database of >50 000 echocardiographic studies, including multiple apical 2- and 4-chamber views (AutoEF, BayLabs). Testing was performed on an independent group of 99 patients, whose automated EF values were compared with reference values obtained by averaging measurements by 3 experts using conventional volume-based technique. Inter-technique agreement was assessed using linear regression and Bland-Altman analysis. Consistency was assessed by mean absolute deviation among automated estimates from different combinations of apical views. Finally, sensitivity and specificity of detecting of EF ≤35% were calculated. These metrics were compared side-by-side against the same reference standard to those obtained from conventional EF measurements by clinical readers. Results: Automated estimation of LVEF was feasible in all 99 patients. AutoEF values showed high consistency (mean absolute deviation =2.9%) and excellent agreement with the reference values: r =0.95, bias=1.0%, limits of agreement =±11.8%, with sensitivity 0.90 and specificity 0.92 for detection of EF ≤35%. This was similar to clinicians’ measurements: r =0.94, bias=1.4%, limits of agreement =±13.4%, sensitivity 0.93, specificity 0.87. Conclusions: Machine learning algorithm for volume-independent LVEF estimation is highly feasible and similar in accuracy to conventional volume-based measurements, when compared with reference values provided by an expert panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.