Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12) and Poly (ADP-ribose) polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses.
Parasitic helminths and helminth-derived molecules have demonstrated to possess powerful anti-inflammatory properties and confirmed therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress specific Th1 specific immune responses induced by concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. In this study, we demonstrate that native F. hepatica glutathione S-transferase (nFhGST), a major parasite excretory-secretory antigen, majorly comprised of Mu-class GST isoforms, significantly suppresses the LPS-induced TNFα and IL1β of mouse bone-marrow derived macrophages in vitro and the pro-inflammatory cytokine/chemokine storm within C57BL/6 mice exposed to lethal doses of LPS increasing their survival rate by more than 85%. Using THP1-Blue CD14 cells, a human monocyte cell line, we also demonstrate that nFhGST suppresses NF-κB activation in response to multiple TLR-ligands, including whole bacteria clinical isolates and this suppression was found to be dose-dependent and independent of the timing of exposure. Moreover, the suppressive effect of nFhGST on NF-κB activation was shown to be independent of enzyme activity or secondary structure of protein. As part of its anti-inflammatory effect nFhGST target multiple proteins of the canonic and non-canonic NF-κB signaling pathway as well as also JAK/STAT pathway. Overall, our results demonstrate the potent anti-inflammatory properties of nFhGST and its therapeutic potential as an anti-inflammatory agent.
Aim Intense interest remains in the identification of compounds to reduce human immunodeficiency virus type 1 (HIV-1) replication. Coriolus versicolor's polysaccharide peptide (PSP) has been demonstrated to possess immunomodulatory properties with the ability to activate an innate immune response through Toll-like receptor 4 (TLR4) showing insignificant toxicity. This study sought to determine the potential use of PSP as an anti-HIV agent and whether its antiviral immune response was TLR4 dependent. Materials and Methods HIV-1 p24 and anti-HIV chemokine release was assessed in HIV-positive (HIV+) THP1 cells and validated in HIV+ peripheral blood mononuclear cells (PBMCs), to determine PSP antiviral activity. The involvement of TLR4 activation in PSP anti-HIV activity was evaluated by inhibition. Results PSP showed a promising potential as an anti-HIV agent, by downregulating viral replication and promoting the upregulation of specific antiviral chemokines (RANTES, MIP-1α/β, and SDF-1α) known to block HIV-1 coreceptors in THP1 cells and human PBMCs. PSP produced a 61% viral inhibition after PSP treatment in HIV-1-infected THP1 cells. Additionally, PSP upregulated the expression of TLR4 and TLR4 inhibition led to countereffects in chemokine expression and HIV-1 replication. Conclusion Taken together, these findings put forward the first evidence that PSP exerts an anti-HIV activity mediated by TLR4 and key antiviral chemokines. Elucidating these new molecular mediators may reveal additional drug targets and open novel therapeutic avenues for HIV-1 infection.
HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of active research. We hypothesized that HIV-1 gp120 clade B and C proteins may exert differential proliferation, cell survival and NeuroAIDS effects in human astrocytoma cells via the Unfolded Protein Response, an endoplasmic reticulum- based cytoprotective mechanism. The differential effect of gp120 clade B and C was evaluated using for the first time a Tandem Mass Tag isobaric labeling quantitative proteomic approach. Flow cytometry analyses were performed for cell cycle and cell death identification. Among the proteins differentiated by HIV-1 gp120 proteins figure cytoskeleton, oxidative stress, UPR markers and numerous glycolytic metabolism enzymes. Our results demonstrate that HIV-1 gp120 B induced migration, proliferative and protective responses granted by the expression of GRP78, while HIV-1 gp120 C induced the expression of key inflammatory and pro-apoptotic markers. These novel findings put forward the first evidence that GRP78 is a key player in HIV-1 clade B and C neuropathogenic discrepancies and can be used as a novel target for immunotherapies.
Actin depolymerization factor (ADF) cofilin-1 is a key cytoskeleton component that serves to lessen cortical actin. HIV-1 manipulates cofilin-1 regulation as a pre- and post-entry requisite. Disruption of ADF signaling is associated with denial of entry. The unfolded protein response (UPR) marker Inositol-Requiring Enzyme-1α (IRE1α) and interferon-induced protein (IFN-IP) double-stranded RNA- activated protein kinase (PKR) are reported to overlap with actin components. In our published findings, Coriolus versicolor bioactive extract polysaccharide peptide (PSP) has demonstrated anti-HIV replicative properties in THP1 monocytic cells. However, its involvement towards viral infectivity has not been elucidated before. In the present study, we examined the roles of PKR and IRE1α in cofilin-1 phosphorylation and its HIV-1 restrictive roles in THP1. HIV-1 p24 antigen was measured through infected supernatant to determine PSP’s restrictive potential. Quantitative proteomics was performed to analyze cytoskeletal and UPR regulators. PKR, IRE1α, and cofilin-1 biomarkers were measured through immunoblots. Validation of key proteome markers was done through RT-qPCR. PKR/IRE1α inhibitors were used to validate viral entry and cofilin-1 phosphorylation through Western blots. Our findings show that PSP treatment before infection leads to an overall lower infectivity. Additionally, PKR and IRE1α show to be key regulators in cofilin-1 phosphorylation and viral restriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.