Intercalation in few‐layer (2D) materials is a rapidly growing area of research to develop next‐generation energy‐storage and optoelectronic devices, including batteries, sensors, transistors, and electrically tunable displays. Identifying fundamental differences between intercalation in bulk and 2D materials will play a key role in developing functional devices. Herein, advances in few‐layer intercalation are addressed in the historical context of bulk intercalation. First, synthesis methods and structural properties are discussed, emphasizing electrochemical techniques, the mechanism of intercalation, and the formation of a solid‐electrolyte interphase. To address fundamental differences between bulk and 2D materials, scaling relationships describe how intercalation kinetics, structure, and electronic and optical properties depend on material thickness and lateral dimension. Here, diffusion rates, pseudocapacity, limits of staging, and electronic structure are compared for bulk and 2D materials. Next, the optoelectronic properties are summarized, focusing on charge transfer, conductivity, and electronic structure. For energy devices, opportunities also emerge to design van der Waals heterostructures with high capacities and excellent cycling performance. Initial studies of heterostructured electrodes are compared to state‐of‐the‐art battery materials. Finally, challenges and opportunities are presented for 2D materials in energy and optoelectronic applications, along with promising research directions in synthesis and characterization to engineer 2D materials for superior devices.
Despite the interest in MXenes in the last decade, all of the MXenes reported have a random mixture of surface terminations (-O, -OH, -F). In addition, restacked 3D films have turbostratic disorder and often contain ions, solvent, and other species in between their layers. Here we report Y 2 CF 2 , a layered crystal with a unit cell isostructural to a MXene, in which layers are capped only by fluoride anions. We directly synthesize the 3D crystal through a high-temperature solid-state reaction, which affords the 3D crystal in high yield and purity and ensures that only fluoride ions terminate the layers.We characterize the crystal structure and electronic properties using a combination of experimental and computational techniques. We find that relatively strong electrostatic 1 arXiv:1909.01490v1 [cond-mat.mtrl-sci] 3 Sep 2019 interactions bind the layers together into a 3D crystal and that the lack of orbital overlap between layers gives rise to a description of Y 2 CF 2 as slabs of MXene-like sheets electrically insulated from one another. Therefore, we consider Y 2 CF 2 as a pure 3D crystalline stack of MXene-like sheets. In addition, Y 2 CF 2 is the first transition metal carbide fluoride experimentally synthesized. We hope this work inspires further exploration of transition metal carbide fluorides, which are potentially a large and useful class of compositions.
Engineering electrode materials for optoelectronic and energy storage applications requires a fundamental understanding of intercalation using spatially‐resolved techniques. However, spectroscopic methods can have limited spatial resolution and low intensity since the signal passes through electrolyte. Here, a device geometry is presented in which the electrolyte is laterally separated from the area probed spectroscopically, so that the signal does not pass through the electrolyte. This geometry enables us to visualize ion transport with optical microscopy and monitor charge transfer with Raman and visible reflectance spectroscopies. In addition, vibrational changes are probed in the mid‐IR, a region previously difficult to access due to electrolyte absorption. This geometry will allow many layered electrodes to be probed in situ using time‐ and spatially‐resolved techniques, including photon and electron spectroscopies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.