The spread of infectious diseases is recognized as one of the most pressing global threats to biodiversity and ecosystem function
The frequency and intensity of drought events are predicted to increase because of climate change, threatening biodiversity and terrestrial ecosystems in many parts of the world. Drought has already led to declines in functionally important tree species, which are documented in dieback events, shifts in species distributions, local extinctions, and compromised ecosystem function. Understanding whether tree species possess the capacity to adapt to future drought conditions is a major conservation challenge. In this study, we assess the capacity of a functionally important plant species from south-eastern Australia (Banksia marginata, Proteaceae) to adapt to water-limited environments. A water-manipulated common garden experiment was used to test for phenotypic plasticity and genetic adaptation in seedlings sourced from seven provenances of contrasting climate-origins (wet and dry). We found evidence of local adaptation relating to plant growth investment strategies with populations from drier climate-origins showing greater growth in well-watered conditions. The results also revealed that environment drives variation in physiological (stomatal conductance, predawn and midday water potential) and structural traits (wood density, leaf dry matter content). Finally, these results indicate that traits are coordinated to optimize conservation of water under water-limited conditions and that trait coordination (phenotypic integration) does not constrain phenotypic plasticity. Overall, this study provides evidence for adaptive capacity relating to drought conditions in B. marginata, and a basis for predicting the response to climate change in this functionally important plant species.
Infectious diseases are recognised as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. A genome wide association study on H. rubra was conducted using pooled whole genome re-sequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 SNP loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (H. iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery determined by rapid evolutionary changes leading to virus resistance. This is a novel example of rapid adaptation in natural populations of a non-model marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.