Persistent malnutrition after COVID-19 infection may worsen outcomes, including delayed recovery and increased risk of rehospitalization. This study aimed to determine dietary intakes and nutrient distribution patterns after acute COVID-19 illness. Findings were also compared to national standards for intake of energy, protein, fruit, and vegetables, as well as protein intake distribution recommendations. Participants (≥18 years old, n = 92) were enrolled after baseline visit at the Post-COVID Recovery Clinic. The broad screening battery included nutritional assessment and 24-h dietary recall. Participants were, on average, 53 years old, 63% female, 69% non-Hispanic White, and 59% obese/morbidly obese. Participants at risk for malnutrition (48%) experienced significantly greater symptoms, such as gastric intestinal issues, loss of smell, loss of taste, or shortness of breath; in addition, they consumed significantly fewer calories. Most participants did not meet recommendations for fruit or vegetables. Less than 39% met the 1.2 g/kg/day proposed optimal protein intake for recovery from illness. Protein distribution throughout the day was skewed; only 3% met the recommendation at all meals, while over 30% never met the threshold at any meal. Our findings highlight the need for nutritional education and support for patients to account for lingering symptoms and optimize recovery after COVID-19 infection.
Objectives Dietary proteins can be broadly characterized by their origin (animal-or plant-based) and amino acid composition (complete vs. incomplete). Meals containing > 20 g of high-quality, complete protein have repeatedly been shown to robustly stimulate skeletal muscle protein synthesis. However, breakfast in many Western countries is dominated by wheat-based products. Wheat and bread are considered a “lower-quality” incomplete source of protein, containing relatively low amounts of lysine and threonine. We hypothesized that a meal containing > 20 g of wheat-based protein would offer no anabolic advantage over a control meal containing only 5 g of plant-based protein. Methods In a subset of healthy, middle-aged women from our recently completed trial (n = 6/17, 53 ± 7 y, 27 ± 2 kg/m2), we measured post-prandial skeletal muscle protein synthesis, blood glucose, insulin and appetite for 3 h following the ingestion of: i) a wheat-based protein meal (INCOMPLETE: 717 kcal, 23 g protein, 120 g carbohydrate, 16 g fat) or ii) a low protein, plant-based, control meal (CONTROL: 542 kcal, 5 g protein, 86 g carbohydrate and 23 g fat). Venous blood samples and vastus lateralis muscle biopsy samples were obtained during a primed (2.0 mmol/kg) constant infusion (0.08 mmol/(kg/min)) of L-[ring-13C6]phenylalanine. All analyses were performed using established, standard techniques. Results Preliminary results indicate post-prandial skeletal muscle protein synthesis was similar in both cohorts (INCOMPLETE: 0.050 ± 0.012%/h vs. CONTROL: 0.054 ± 0.025%/h; p = 0.83) and consistent with fasting values historically measured by our lab. Blood glucose area under the curve (AUC; p = 0.82), insulin AUC (p = 0.85) and hunger AUC were similar in both cohorts. Conclusions A moderate serving of incomplete protein failed to robustly stimulate skeletal muscle protein synthesis. Consumption of a higher-quality, completeprotein meal is likely required to acutely increase muscle protein anabolism. Funding Sources National Cattlemen's Beef Association
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.