Speech-to-speech translation combines machine translation with speech synthesis, introducing evaluation challenges not present in either task alone. How to automatically evaluate speech-to-speech translation is an open question which has not previously been explored. Translating to speech rather than to text is often motivated by unwritten languages or languages without standardized orthographies. However, we show that the previously used automatic metric for this task is best equipped for standardized high-resource languages only. In this work, we first evaluate current metrics for speechto-speech translation, and second assess how translation to dialectal variants rather than to standardized languages impacts various evaluation methods.
Speech-to-speech translation combines machine translation with speech synthesis, introducing evaluation challenges not present in either task alone. How to automatically evaluate speech-to-speech translation is an open question which has not previously been explored. Translating to speech rather than to text is often motivated by unwritten languages or languages without standardized orthographies. However, we show that the previously used automatic metric for this task is best equipped for standardized high-resource languages only. In this work, we first evaluate current metrics for speechto-speech translation, and second assess how translation to dialectal variants rather than to standardized languages impacts various evaluation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.