Immune checkpoint inhibitors (ICIs) are widely used for various malignancies. However, their safety and efficacy in patients with a kidney transplant have not been defined. To delineate this, we conducted a multicenter retrospective study of 69 patients with a kidney transplant receiving ICIs between January 2010 and May 2020. For safety, we assessed the incidence, timing, and risk factors of acute graft rejection. For efficacy, objective response rate and
Myeloid‐derived suppressor cells (MDSC) are negative regulators of the immune response and are in part responsible for the inhibition of the T cell–mediated immune responses. While MDSC have been demonstrated to participate in the induction of prolonged allograft survival in animal models of transplantation, little is known about their immune regulatory function in human transplant recipients. Here, we report that two subsets of human MDSC expressing CD11b+, CD33+ and HLA‐DR− develop in renal patients posttransplantation. We found that CD14+ expressing monocytic MDSC isolated from transplant recipients were highly efficient in suppressing the proliferation of CD4+ T cells in mixed leukocyte reactions. In addition, we observed that CD11b+CD33+HLA‐DR− MDSC are capable of expanding Treg in vitro, and their accumulation overtime after transplantation linearly correlated with an increase in Treg in vivo. This is the first study to link the presence of MDSC with the emergence of Treg in vivo in transplant recipients, and to define the subpopulation of MDSC derived from transplant recipients responsible for generation of Treg. Further studies are necessary to determine the alloimmune regulatory function of MDSC in human transplant recipients.
Summary
Background
Chronic injury in kidney transplants remains a major cause of allograft loss. The aim of this study was to identify a gene set capable of predicting renal allografts at risk of progressive injury due to fibrosis.
Methods
This Genomics of Chronic Allograft Rejection (GoCAR) study is a prospective, multicentre study. We prospectively collected biopsies from renal allograft recipients (n=204) with stable renal function 3 months after transplantation. We used microarray analysis to investigate gene expression in 159 of these tissue samples. We aimed to identify genes that correlated with the Chronic Allograft Damage Index (CADI) score at 12 months, but not fibrosis at the time of the biopsy. We applied a penalised regression model in combination with permutation-based approach to derive an optimal gene set to predict allograft fibrosis. The GoCAR study is registered with ClinicalTrials.gov, number NCT00611702.
Findings
We identified a set of 13 genes that was independently predictive for the development of fibrosis at 1 year (ie, CADI-12 ≥2). The gene set had high predictive capacity (area under the curve [AUC] 0·967), which was superior to that of baseline clinical variables (AUC 0·706) and clinical and pathological variables (AUC 0·806). Furthermore routine pathological variables were unable to identify which histologically normal allografts would progress to fibrosis (AUC 0·754), whereas the predictive gene set accurately discriminated between transplants at high and low risk of progression (AUC 0·916). The 13 genes also accurately predicted early allograft loss (AUC 0·842 at 2 years and 0·844 at 3 years). We validated the predictive value of this gene set in an independent cohort from the GoCAR study (n=45, AUC 0·866) and two independent, publically available expression datasets (n=282, AUC 0·831 and n=24, AUC 0·972).
Interpretation
Our results suggest that this set of 13 genes could be used to identify kidney transplant recipients at risk of allograft loss before the development of irreversible damage, thus allowing therapy to be modified to prevent progression to fibrosis.
Funding
National Institutes of Health.
The glomerular filtration barrier is a highly specialized blood filtration interface that displays a high conductance to small and midsized solutes in plasma but retains relative impermeability to macromolecules. Its integrity is maintained by physicochemical and signalling interplay among its three core constituents—the glomerular endothelial cell, the basement membrane and visceral epithelial cell (podocyte). Understanding the pathomechanisms of inherited and acquired human diseases as well as experimental injury models of this barrier have helped to unravel this interdependence. Key among the consequences of interference with the integrity of the glomerular filtration barrier is the appearance of significant amounts of proteins in the urine. Proteinuria correlates with kidney disease progression and cardiovascular mortality. With specific reference to proteinuria in human and animal disease phenotypes, the following review explores the roles of the endothelial cell, glomerular basement membrane, and the podocyte and attempts to highlight examples of essential crosstalk within this barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.