2-Aminopurine (2AP) is a fluorescent adenine analogue that is useful in part because its substantial fluorescence quantum yield is sensitive to base stacking with native bases in ss- and ds-DNA. However, the degree of quenching is sequence dependent and the mechanism of quenching is still a matter of some debate. Here we show that the most likely quenching mechanism in aqueous solution involves photoinduced electron transfer (PET), as revealed by cyclic voltammetry (CV) performed in aprotic organic solvents. These potentials were used with spectroscopic data to obtain excited-state reduction and oxidation potentials. Stern-Volmer (S-V) experiments using the native base monophosphate nucleotides (NMPs) rGMP, rAMP, rCMP, and dTMP were performed in aqueous solution to obtain quenching rate constants kq. The results suggest that 2AP* can act as either an electron donor or an electron acceptor depending on the particular NMP but that PET proceeds for all NMPs tested.
8-Vinyladenosine (8VA) is an adenosine analog, like 2-aminopurine (2AP), that has a red-shifted absorption and high fluorescence quantum yield. When introduced into double-stranded DNA (dsDNA), its base-pairing and base-stacking properties are similar to those of adenine. Of particular interest, the fluorescence quantum yield of 8VA is sensitive to base stacking, making it a very useful real-time probe of DNA structure. The fundamental photophysics underlying this fluorescence quenching by base stacking is not well understood, and thus exploring the excited state electronic structure of the analog is warranted. In this study, we report on changes in the electronic structure of 8VA upon optical excitation. Stark spectroscopy was performed on 8VA monomer in frozen ethanol glass at 77 K to obtain the direction and degree of charge redistribution in the form of the difference dipole moment, Deltamu(01) = 4.7 +/- 0.3 D, and difference static polarizability, tr(Delta(alpha)01) = 21 +/- 11 A(3), for the S(0)-->S(1) transition. In addition, solvatochromism experiments were performed on 8VA in various solvents and analyzed using Bakhshiev's model. High level ab initio methods were employed to calculate transition energies, oscillator strengths, and dipole moments of the ground and excited states of 8VA. The direction of Deltamu(01) was assigned in the molecular frame for the lowest optically accessible state. Our study shows that the angle between ground and excited state dipole moment plays a critical role in understanding the change in electronic structure upon optical excitation. Compared to 2AP, 8VA has a larger difference dipole moment which, with twice the extinction coefficient, suggests that 8VA is superior as a two-photon probe for microscopy studies. To this end, we have measured the ratio of the two-photon fluorescence yields of the two analogs by excitation at the respective monomer absorption maxima. We show that 8VA is indeed a significantly brighter two-photon fluorophore, based on our experimental and computational results.
Fluorescent nucleic acid base analogues (FBAs) are used widely as probes of DNA and RNA structure and dynamics. Of increasing utility are the pteridone adenosine analogues (6MAP, DMAP) and pteridine guanosine analogues (3MI, 6MI). These FBAs (collectively referred to as PTERs) are useful, in part, because their fluorescence quantum yields, Phi(f), are modulated by base stacking with native bases (NBs), making them sensitive reporters of DNA structure. The quenching mechanism has been hypothesized to be photoinduced electron transfer following selective excitation of the FBA, but hard evidence for this has been lacking. The degree of quenching shows some dependence on the neighboring bases, but there has been no real determination as to whether FBA*:NB complexes satisfy the basic thermodynamic requirement for spontaneous PET: a negative free energy for the electron transfer reaction. Indeed, quenching may result from entirely different mechanisms. To address these questions, Stern-Volmer (S-V) experiments were performed using the native-base monophosphate nucleotides (NMPs) GMP, AMP, CMP, and dTMP in aqueous solutions as quenchers to obtain quenching rate constants, k(q). Cyclic voltammetry (CV) and optical absorption and emission data of the PTERS were obtained in aprotic organic solvents. These data were used to obtain excited-state redox potentials from which electron transfer free energies were derived using the Rehm-Weller equation. The reorganization energies for PET were obtained using the Scandola-Balzani equation, taking into account the free energy contribution due to water. 6MAP*, DMAP*, and 3MI* gave negative free energies between -0.1 and -0.2 eV and reorganization energies of about 0.13 eV. They all displayed ET activation energies below the accessible thermal energy (0.038 eV = 3/2k(B)T, where k(B) is Boltzmann's constant) for all NMPs with the exception of CMP, whose activation barrier was only about 35% higher (approximately 0.05 eV). Thus, we conclude that these PTERs act as electron acceptors and promote NMP oxidation. However, 6MI* had positive ET free energies for all NMPs with the exception of GMP (and then only for nucleobase oxidation). The magnitudes of these free energies (> or = 0.45 eV for AMP, CMP, and dTMP) suggest that 6MI* may not quenched by PET.
Background: Complex I is the largest proton pump in mitochondria, yet its mechanism is unknown. Results: For the first time, inhibitor-sensitive semiquinone and cluster N6 signals were detected in affinity-purified E. coli complex I. Conclusion:The semiquinone species is involved in the redox-driven proton-pumping mechanism. Significance: Our highly pure complex I will help advance the mechanistic study of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.