Objective: Rupatadine fumarate (RF) is an anti-allergic drug indicated for the treatment of allergic rhinitis. It has low oral bioavailability due to its poor aqueous solubility and extensive hepatic first pass metabolism. In the present work, oral fast-dissolving films (OFDF) have been formulated and evaluated to facilitate dissolution in the oral cavity itself. Methods: Pullulan and HPMC (5, 15 cps) were employed as film formers and six formulations were tried. The physicochemical compatibility between drug and the polymers was studied by FTIR spectroscopy. RF-beta-cyclodextrin (BCD) inclusion complex was initially prepared and evaluated. The inclusion complex was incorporated into the film. OFDF were formulated and prepared by solvent casting method. The film size for one dose was 2 × 2 cm. The films were evaluated for various film parameters including disintegration time and drug release. Results: Preliminary film studies indicated % of film former solution to be between 3 and 5% for good appearance, mechanical strength, and quick disintegration. Solubility enhancement of RF is almost 40-fold from its BCD inclusion complex. Drug content in the films ranged between 83 and 90%. The pH ranged between 6 and 7 for all the formulations. All OFDF of RF disintegrated within one minute. With higher viscosity grade of HPMC, disintegration was comparatively slower and so was the drug release. Pullulan based films also showed desirable properties. F3 had disintegration time was 28 s and % drug release was 92% in 180 s. Conclusion: OFDF of RF could be formulated employing pullulan and HPMC low viscosity grades by solvent casting method. F3 containing HPMC E5 at 37% by weight of dry film showed desirable film properties. Stability studies indicated that there was no significant change in the films with respect to physicochemical properties and in vitro release.
Fungal infection are the common dermatological diseases. Drug delivery systems for topical use have shown significant advantages in targeting the drug to the action site in the body and also reduces the systemic side effects.In the present study an attempt was made to prepare econazole nitrate loaded nanostructured lipid carrier (NLC). Different formulations were prepared by hot homogenization technique using solid lipid and liquid lipid (GMS, GMO) and surfactants (Poloxamer 188, Poloxamer 407). Formulations were characterized for entrapment efficiency, viscosity, spreadability, pH and in vitro drug release.Entrapment efficiency of formulation F1-F8 was found to be 65.81-74.63%. The drug release of NLC gel followed zero order kinetics. NLC gel were stable at 40 ± 2ֹ°C and 75 ± 5% RH. Thus, the prepared NLC gel proved to be a potential candidate as a topical nanoparticulate sustained drug delivery system for econazole nitrate.
Objective: Direct compression method is preferable for tablet manufacture. The direct compression method is followed for many formulations but the relevant study is not reported. The present work aims to study the suitability of the direct compression process to prepare tablets of quinapril hydrochloride (QHCl), a low dose drug with a starting dose of 5 mg, indicated in the treatment of hypertension, congestive heart failure, and other conditions. Methods: QHCl is reported to be unstable in the presence of moisture, heat, and some excipients. The direct compression method was tried instead of a wet granulation technique to prepare the tablets. Initially, drug-excipient compatibility study was carried out. For selected excipients and QHCl preformulation tests were conducted. The stabilizer was employed. Three formulations were tried. The blends were prepared by tumbling and trituration methods. Blend uniformity and precompression parameters were determined. Tablets were directly compressed and evaluated. Results: Drug-excipient compatibility was studied at 60°C and 40°C with an Relative humidity (RH) of 75% for 4 weeks. It showed discoloration of the pure drug and most of the drug excipient mixtures. Three formulations Q1, Q2, and Q3 were prepared using magnesium oxide (light), magnesium carbonate (light), and Aerosil as stabilizers. Blending was done by trituration and tumbling method for 10 min and 15 min duration for the given batch size. Blend uniformity was determined. Tumbling method for 15 min showed good blending as evident from the percentage coefficient of variation values. The blends had a good flow. Tablet evaluation showed hardness in the range of 2.5–3 kg/cm2 and disintegration time of 1–2 min. Q1 and Q2 passed the friability test. The content uniformity criterion was achieved with an acceptance value <20. In vitro dissolution, Q1 and Q2 were 100% and 98.8%, respectively, in 30 min and followed first-order kinetics. The stability study of Q1 indicated a single peak in the chromatogram corresponding to the drug. Q2 showed spotted discoloration. Conclusion: The direct compression technique could be employed for the preparation of QHCl tablets. Q1 showed better stability and release characteristics. Q2 and Q3 are considered for further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.