Worldwide, there is an amplified interest in nanotechnology-based approaches to develop efficient nitrogen, phosphorus, and potassium fertilizers to address major challenges pertaining to food security. However, there are significant challenges associated with fertilizer manufacture and supply as well as cost in both economic and environmental terms. The main issues relating to nitrogen fertilizer surround the use of fossil fuels in its production and the emission of greenhouse gases resulting from its use in agriculture; phosphorus being a mineral source makes it nonrenewable and casts a shadow on its sustainable use in agriculture. This study focuses on development of an efficient P nutrient system that could overcome the inherent problems arising from current P fertilizers. Attempts are made to synthesize citric acid surface-modified hydroxyapatite nanoparticles using wet chemical precipitation. The resulting nanohybrids were characterized using powder X-ray diffraction to extract the crystallographic data, while functional group analysis was done by Fourier transform infrared spectroscopy. Morphology and particle size were studied using scanning electron microscopy along with elemental analysis using energy-dispersive X-ray diffraction spectroscopy. Its effectiveness as a source of P was investigated using water release studies and bioavailability studies using Zea mays as the model crop. Both tests demonstrated the increased availability of P from nanohybrids in the presence of an organic acid compared with pure hydroxyapatite nanoparticles and rock phosphate.
Application of micronutrients through seed amendments is an interesting option for field crops, allowing a uniform distribution of fertilizers in a seed batch. This process can be further improved by developing advanced materials for seed coatings that have the ability to carry out the delivery of plant nutrients with greater precision leading to enhanced germination. Herein, we disclose a novel nanoseed coating based on zinc-doped urea−hydroxyapatite nanohybrids synthesized via a one-pot in situ sol−gel synthetic route. The formation of a substituted solid with an altered chemical environment and the lattice shrinkage of hydroxyapatite nanoparticles due to the successful doping of zinc and urea incorporation were evident from characterization studies. The developed nanoseed coating was effective in increasing the rate of growth of Zea mays seeds by ∼69% and the germination rate by 19%, claiming its suitability as a potential candidate for the delivery of nitrogen, phosphorus, and zinc at the seedling stage.
Thermal instability, photodegradation, and poor bioavailability of natural active ingredients are major drawbacks in developing effective natural product-based antimicrobial formulations. These inherited issues could be fruitfully mitigated by the introduction of natural active ingredients into various nanostructures. This study focuses on the development of a novel green mechanochemical synthetic route to incorporate curcuminoids into Mg-Al-layered double hydroxides. The developed one-pot and scalable synthetic approach makes lengthy synthesis procedures using toxic solvents redundant, leading to improved energy efficiency. The hydrotalcite-shaped nanohybrids consist of surface and interlayer curcuminoids that have formed weak bonds with layered double hydroxides as corroborated by X-ray diffractograms, X-ray photoelectron spectra, and Fourier transmission infrared spectra. The structural and morphological properties resulted in increased thermal stability of curcuminoids. Slow and sustained release of the curcuminoids was observed at pH 5.5 for a prolonged time up to 7 h. The developed nanohybrids exhibited zeroth-order kinetics, favoring transdermal application. Furthermore, the efficacy of curcuminoid incorporated LDHs (CC-LDH) as an anticolonization agent was investigated against four wound biofilm-forming pathogens, Pseudomonas aeruginosa , Staphylococcus aureus , methicillin-resistant Staphyloccocus aureus , and Candida albicans , using a broth dilution method and an in vitro biofilm model system. Microbiological studies revealed a 54–58% reduction in biofilm formation ability of bacterial pathogens in developed nanohybrids compared to pure curcuminoids. Therefore, the suitability of these green-chemically synthesized CC-LDH nanohybrids for next-generation antimicrobial applications with advanced dermatological/medical properties is well established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.