Surface functionalization via decorating nanometal particles on MWCNTs for hydrogen uptake through a spillover mechanism is the key for hydrogen energy storage for transport sectors.
Quality of water, along Mandal headquarters of a coastal district of Andhra Pradesh, India, was assessed prior to and past rainfall season to determine water's acceptability for consumption using water quality index (WQI). The present work involved collecting groundwater samples from Mandal headquarters' locations present in the entire district. All the samples were analysed in a comprehensive way for ten physicochemical parameters, including pH, magnesium, calcium, chloride, sulphate, nitrates, total dissolved solids, fluoride, potassium, and sodium. The geographical information system was used for mapping sampling sites. The coordinates of sample collection areas were recorded employing GPS. Correlation matrices for cation–anion were illustrated and from the qualitative results of the samples. Results indicate that WQI prior and past-rainfall seasons ranged from 37.53 to 312.46; 42.04 to 211.89 in 2016, while for 2017, these were in the range of 25.01 to 137.06; 30.06 to 228.83. The present study's WQI values indicate that the water samples possess poor quality, and no fluoride contaminations were observed. The analysis suggests appropriate treatment of sub-surface water from the study site before consumption.
Due to rapid urbanization and industrialization, water demand has increased worldwide. The availability of potable water is becoming more difficult in the global scenario. Hazardous pollution disposal by the industries to the nearest stream and search for the facile environmentally friendly technologies capable of treating these pollutants become more challenging. Effluent disposal consisting of the dyes without proper pre-treatment adversely affects the aquatic life and ecological system as they are carcinogenic and highly toxic. Dyes in the water are becoming a significant problem in the current scenario and attracted many researchers to research the current topic. Even though the conventional treatment options are available for treating polluted water, still they are not enough for the demand and supply. Thus, new state-of-the-art technologies are required to meet the demand and supply. Titanium dioxide nanofibers synthesized by electrospinning techniques have proven to be new nanomaterials gaining prominence in science. Several researchers are using these fibres by fabricating them into a thin film for pollutant removal and water treatment. They are gaining much importance as they perform best in treating water containing both organic and inorganic loads. The present review provides insights into the background and the origin of the electrospun nanofibers and preparation mechanisms. Further, we identified 25 widely used titanium dioxide electrospun nanofibers with various combinations in removing the dyes from the aqueous medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.