Tunability of fluorescence intensity is an essential parameter for enhancing the versatility of devices like emissive displays and solar cells. Soft photonic crystals, with their tunable photonic band gap (PBG), are highly sought-after systems for such purposes. Here, we report modulation of photoluminescence (PL) intensity in a fluorescent dye-doped blue phase liquid crystal, a 3D soft photonic crystal. On cooling, from the isotropic fluid phase, the PL intensity gets enhanced due to the overlapping of the emission wavelength of the dye with the photonic band edge. However, the PL intensity decreases on the application of an electric field, despite both thermal and electric fields having a similar effect (red shift) on the PBG. The contrasting behavior of PL intensity, also observed in composites obtained by varying the dye and the chiral dopant (handedness), is discussed in terms of scattering pathways for the emitted photons. The time-resolved PL studies show a reduction in the lifetime of the excited species upon cooling, validating the thermal dependence of PL intensity modulation due to Purcell effect. The facile modulation of PL intensity in the dye-doped blue phase system makes it appealing from the point of view of high-performance photonic applications.
We report on the instabilities in the Freedericksz state of the twist-bend nematic (NTB) liquid crystal 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB). The quasi homeotropic NTB state, into which a planar (untwisted or 90°-twisted) nematic CB7CB layer transits under a strong electric field, is found to be unstable despite the material being dielectrically positive. Close to the NTB melting point, destabilization occurs through the formation of metastable toric focal conic domains (TFCDs) that, in time, transform into parabolic focal conic domains (PFCDs) with the confocal parabolae in vertical planes through the layer normal. This transformation occurs by a novel process of continued dissociation of TFCDs. We outline how the extended Volterra process could help in a general appreciation of focal conic defects in the NTB phase. At relatively lower temperatures, stripes develop competingly with TFCDs. Identifiable as oily streaks, they are both localized and polarity sensitive; they form close to the substrates; and in low frequency square wave fields, they get suppressed at the cathode and augmented at the anode at each polarity switch. The study also dwells on the N-NTB-N sandwich region, found between the N and NTB states under a small temperature gradient.
Nanoscale structures in fluid media normally require techniques such as freeze fracture electron microscopy and atomic force microscopy for their visualization. As demonstrated in the present study, the surface modification due to nanoscale clusters occurring intrinsically in nematics made of bent-shaped molecules with either rigid or flexible cores leads to microscale structures, which are visible in an optical microscope. The underlying physical mechanism proposed here involves a quasiperiodic change in anchoring conditions on untreated glass plates for the medium made of islands of clusters surrounded by unclustered molecules. The resulting pattern of stripes outlines the director-normal field around line defects in the well-known schlieren texture. The instability, which is seen over most of the nematic range, with increasing visibility under continued cooling of the sample, sets the nematics made of bent-shaped molecules apart from the classical nematics of rod-shaped molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.