SummaryFewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression.
BackgroundFoxp3 has been suggested to be a standard marker for murine Tregs whereas its role as marker for human Tregs is controversial. While some reports have shown that human Foxp3+ T cells had no regulatory function others have shown their role in the inhibition of T cell proliferation.MethodsT cell activation was performed by means of brayostatin-1/ionomycin (B/I), mixed lymphocyte reaction (MLR), and CD3/CD28 activation. T cell proliferation was performed using BrdU and CFSE staining. Flow cytometry was performed to determine Foxp3 expression, cell proliferation, viabilities and phenotype analyses of T cells.ResultsBoth CD4+ and CD8+ T cells expressed Foxp3 upon activation in vitro. Expression of Foxp3 remained more stable in CD4+CD25+ T cells compared to that in CD8+CD25+ T cells. The CD4+CD25+Foxp3+ T cells expressed CD44 and CD62L, showing their effector and memory phenotypes. Both FoxP3- responder T cells and CD4+FoxP3+ T cells underwent proliferation upon CD3/CD28 activation.ConclusionExpression of Foxp3 does not necessarily convey regulatory function in human CD4+CD25+ T cells. Increased FoxP3 on CD44+ effector and CD44+CD62L+ memory T cells upon stimulation suggest the activation-induced regulation of FoxP3 expression.
High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)–resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN-amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity.
Laryngotracheal stenosis is an obstructive respiratory disease that leads to voicing difficulties and dyspnea with potential life-threatening consequences. The majority of incidences are due to iatrogenic etiology from endotracheal tube intubation; however, airway scarring also has idiopathic causes. While recent evidence suggests a microbial contribution to mucosal inflammation, the microbiota associated with different types of stenosis has not been characterized. High-throughput sequencing of the V4 region of the16S rRNA gene was performed to characterize the microbial communities of 61 swab samples from 17 iatrogenic and 10 adult idiopathic stenosis patients. Nonscar swabs from stenosis patients were internal controls, and eight swabs from four patients without stenosis represented external controls. Significant differences in diversity were observed between scar and nonscar samples and among sample sites, with decreased diversity detected in scar samples and the glottis region. Permutational analysis of variance (PERMANOVA) results revealed significant differences in community composition for scar versus nonscar samples, etiology type, sample site, groups (iatrogenic, idiopathic, and internal and external controls), and individual patients. Pairwise Spearman’s correlation revealed a strong inverse correlation between Prevotella and Streptococcus among all samples. Finally, bacteria in the family Moraxellaceae were found to be distinctly associated with idiopathic stenosis samples in comparison with external controls. Our findings suggest that specific microbiota and community shifts are present with laryngotracheal stenosis in adults, with members of the family Moraxellaceae, including the known pathogens Moraxella and Acinetobacter, identified in idiopathic scar. Further work is warranted to elucidate the contributing role of bacteria on the pathogenesis of laryngotracheal stenosis. IMPORTANCE The laryngotracheal region resides at the intersection between the heavily studied nasal cavity and lungs; however, examination of the microbiome in chronic inflammatory conditions of the subglottis and trachea remains scarce. To date, studies have focused on the microbiota of the vocal folds, or the glottis, for laryngeal carcinoma, as well as healthy larynges, benign vocal fold lesions, and larynges exposed to smoking and refluxate. In this study, we seek to examine the structure and composition of the microbial community in adult laryngotracheal stenosis of various etiologies. Due to the heterogeneity among the underlying pathogenesis mechanisms and clinical outcomes seen in laryngotracheal stenosis disease, we hypothesized that different microbial profiles will be detected among various stenosis etiology types. Understanding differences in the microbiota for subglottic stenosis subtypes may shed light upon etiology-specific biomarker identification and offer novel insights into management approaches for this debilitating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.