The sensory and motor connections of the cervical vagus nerves and of its inferior ganglion (nodose ganglion) have been traced in the medulla and upper cervical spinal cord of 16 male Wistar rats by using horseradish peroxidase (HRP) neurohistochemistry. The use of tetramethyl benzidine (TMB) as the substrate for HRP permitted the visualization of transganglionic and retrograde transport in sensory nerve terminals and perikarya, respectively. The vagus nerve in the rat enters the medulla in numerous fascicles with points of entry covering the entire lateral aspect of the medulla extending from level +4 to -6 mm rostrocaudal to the obex. Fascicles of vagal sensory fibers enter the dorsolateral aspect of the medulla and travel to the tractus solitarius (TS) which was labeled for over 8.8 mm in the medulla. The caudal extent of the TS receiving vagal projections was found in lamina V of the cervical spinal cord (C1 to C2). Sensory terminal fields could be visualized bilaterally in the nucleus of the tractus solitarius (nTS), area postrema (ap) and dorsal motor nucleus of the vagus nerve (dmnX). The ipsilateral projection to the nTS and the dmnX was heavier than that found on the contralateral side. The area postrema was intensely labeled on both sides. Motor fibers from HRP-labeled perikarya in the dmnX travel ventromedially in a distinct fascicle and subsequently subdivide into a number of small fiber bundles that traverse the medullary reticular formation in the form of a fine network of HRP-labeled fibers. As these fibers from the dmnX approach the ventrolateral aspect of the medulla they are joined by axons from the nucleus ambiguus (nA), nucleus retroambigualis (nRA) and the retrofacial nucleus (nRF). These latter fibers form hairpin loops in the middle of the reticular formation to accompany the axons from the dmnX exiting from the medulla in a ventrolateral location. HRP-labeled perikarya, in contrast to transganglionically transported HRP in sensory terminals in the nTS, were visualized on one side only, thus indicating that motor control via the vagus nerve is exerted only by motor neurons located ipsilaterally. Sensory information on the other hand, diverges to many nuclear subgroups located on both sides of the medulla.
The central sensory and motor connections of various respiratory, cardiovascular, aqd gastrointestinal viscera were analyzed using the transganglionic and retrograde transport of horseradish peroxidase (HRP).In 42 adult cats, we examined the brain stem and peripheral ganglia following microinjections of HRP (10 p1) into individual visceral organs-larynx, extrathoracic trachea, intrathoracic trachea, right main bronchus, right lung (upper lobe), heart, and stomach. Comparison of individual cases led to the conclusion that distinct patterns of sensory and motor projections to the medulla exist for each visceral organ studied.The nucleus of the tractus solitarius (nTS) receives the sensory projections from all the viscera listed above, with two exceptions: (1) a few sensory fibers from the larynx terminate in the ipsilateral spinal tract of the trigeminal nerve (spV), and (2) some sensory fibers from the bronchus, lung, and stomach terminate in the area postrema (ap). Within the nTS, the sensory fibers from each visceral organ terminate in a number of subnuclei. The dnTS, mnTS, and ncom receive sensory projections from all the viscera studied. The remaining five subnuclei (dlnTS, ni, nI, vlnTS, vnTS) of the nTS are not connected to all viscera, and the density of projections to these regions varies for different viscera. However, there does not seem to be any specific region of the medulla which is devoted entirely to receiving the sensory fibers from a particular visceral organ. Rather, the rostrocaudal extent of sensory fibers, from most of the viscera studied, spans the entire length of the medulla. Differences in the central representation of viscera were found to be subtle and to lie within the organization of the nuclear subgroups of the nTS. The central representation of unpaired or midline viscera (e.g., trachea and heart) is bilateral for both sensory and motor innervation. However, for unilateral, paired viscera (e.g., bronchi and lungs), it was consistently found that over one third of the sensory and motor representation is contralateral. Control experiments involving vascular injections of HRP excluded the possibility that this contralatera1 labeling could have been due to vascular uptake of the enzyme. The localization of sensory perikarya of visceral afferents in the "principal visceral ganglion" of the vagus-the nodose ganglion-was overlapping, and no well-demarcated regions in the nodose ganglion could be identified that received projections primarily from a given visceral organ.The motor nuclei providing parasympathetic (preganglionic) and somatic motor innervation to the viscera were primarily the dmnX, nA, and nRA. The entire dmnX (extending over 10-15 mm rostrocaudally), contributed fibers to each area injected with HRP, with the exception of the extrathoracic trachea. No region in the dmnX was found where preference was given to a specific viscus. The nA contributed efferents to all the viscera studied, and this contribution came from the 468M. KALIA AND M-M. MESULAM entire 6 mm of n...
The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components--axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve.
The aim of this study was to determine the anatomical relationships between catecholaminergic neurons and cytoarchitectonically defined nuclei in the caudal medulla oblongata. Previous studies have demonstrated the existence of noradrenergic cell bodies (designated as the A1 and A2 cell groups) in the caudal medulla oblongata of the rat (Dahlström and Fuxe, '64), including the nTS. There is no information currently available with regard to details of the distribution of these noradrenergic neurons in the functionally distinct subnuclei of the medulla oblongata. In this study the location of catecholamine-synthesizing enzymes was examined in the serial sections of the caudal medulla oblongata of the rat: tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine N-methyl transferase (PNMT). The immunoperoxidase method of Sternberger ('79) was used to demonstrate the location of immunoreactive neurons, nerve fibers, and presumptive terminal processes. This was followed by Nissl staining of the same sections to localize accurately the immunoreactivity. Noradrenergic neurons (TH- and DBH-positive and PNMT-negative) were localized in a number of subnuclei of the nucleus of the tractus solitarius (nTS), the area postrema (ap), and in the dorsal motor nucleus of the vagus (dmnX). The distribution of these noradrenergic cells was different at different rostrocaudal levels. In addition, adrenergic neurons (TH-, DBH-, and PMNT-positive) were identified dorsal to the tractus solitarius (TS), in the dorsal strip region (ds), the periventricular region (PVR), the dorsal parasolitarius region (dPSR), and the dmnX (rostral to obex). In addition, dopaminergic neurons (TH-positive and DBH- and PNMT-negative) were found in the ap and dmnX. The A1 cell group in the ventrolateral medulla consisted almost exclusively of noradrenergic neurons (TH- and DBH-positive and PNMT-negative). These results indicate that in the rat the A2 cell group is a mixed population of catecholaminergic neurons that are localized in well-defined regions of the dorsal medulla oblongata. The distribution of these neurons is very specific both in terms of rostrocaudal levels and cytoarchitectonic subdivisions of regions of the medulla known to be involved in central autonomic control. This supports the hypothesis that monoaminergic neurons in the dorsal medulla play important roles in the central regulation of visceral function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.