Automotive underhood electronics are subjected to high operating temperatures in the neighborhood of 150 to 200°C for prolonged periods in the neighborhood of 10-years. Consumer grade off-the shelf electronics are designed to operate at 55 to 85 °C with a lower use-life of 3 to 5 years. Underfill materials are used to provide supplemental restraint to fine-pitch area array electronics and meet the reliability requirements. In this paper, a number of different underfill materials are subjected to automotive underhood temperatures to study the effect of long time isothermal exposure on microstructure and dynamic-mechanical properties. It has been shown that isothermal aging oxidizes the underfill, which can change the mechanical properties of the material significantly. The oxidation of underfill was studied experimentally by measuring oxidation layer thickness using polarized optical microscope. The effect on the mechanical properties was studied using the dynamic mechanical properties of underfill with DMA (Dynamic Mechanical Analyzer). Two different underfill materials were subjected to three different isothermal exposure, which are below, near and above the glass transition temperature of the underfills. The dynamic mechanical viscoelastic properties like storage modulus, loss modulus, tan delta and their respective glass transition temperatures were investigated. Three point bending mode was used in the DMA with a frequency of 1 Hz operating at 3 °C/min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.