Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
HIV-1 Maturation inhibitors (MIs) bind to the C-terminal domain of capsid protein (CA-CTD) and spacer peptide 1 (SP1) in HIV-1 Gag and inhibit the CA-SP1 cleavage by stabilizing the immature Gag. The β-turn motif, GVGGP in the HIV CA-CTD (residues 220-224) is one of the key determinants of HIV Gag assembly. In the present study, we mutated each residue of HIV-1 β-turn motif to alanine and observed complete inhibition of virus release of all mutants. This defect in virus release was rescued in the presence of maturation inhibitors; BVM and PF-46396 for P224A mutant. To our knowledge, this is the first report of identification of BVM and PF-46396-dependent capsid mutant. Our results highlight the importance of the core β-turn motif residues in immature virus assembly and suggest that the presence of MIs enhances Gag membrane binding and multimerization thereby restoring virus release of HIV Gag P224 mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.