Addition of hydrazines to a 1,8-disubstituted anthraquinone macrocycle containing a polyether ring produces site-selective imination, where hydrazone formation produces the more sterically hindered adduct. Reduction of the remaining carbonyl group to a secondary alcohol followed by addition of copper(II) ion causes intense yellow fluorescence to occur, which is selective for this metal cation and allows this system to be used as a fluorescence sensor. In the presence of water, a green-fluorescent intermediate appears, which slowly decomposes to produce the original starting anthraquinone. The addition of a large amount of water radically changes the reaction pathway. In this case, oxidation of the secondary alcohol is kinetically faster than hydrolysis of the hydrazone, although the same anthraquinone product is ultimately produced. Stern-Volmer data suggest that dioxygen quenches the green emission through both dynamic and static mechanisms; the static ground-state effect is most likely due to association of oxygen with the copper-bound fluorescent intermediate.
We report here a series of heteroatom-substituted macrocycles containing an anthraquinone moiety as a fluorescent signaling unit and a cyclic polyheteroether chain as the receptor. Sulfur, selenium, and tellurium derivatives of 1,8-anthraquinone-18-crown-5 (1) were synthesized by reacting sodium sulfide (Na2S), sodium selenide (Na2Se) and sodium telluride (Na2Te) with 1,8-bis(2-bromoethylethyleneoxy)anthracene-9,10-dione in a 1 : 1 ratio. The optical properties of the new compounds are examined and the sulfur and selenium analogues produce an intense green emission enhancement upon association with Pb(II) in acetonitrile. Selectivity for Pb(II) is markedly improved as compared to the oxygen analogue 1 which was also competitive for Ca(II) ion. UV-Visible and luminescence titrations reveal that 2 and 3 form 1 : 1 complexes with Pb(II), confirmed by single-crystal X-ray studies where Pb(II) is complexed within the macrocycle through coordinate covalent bonds to neighboring carbonyl, ether and heteroether donor atoms. Cyclic voltammetry of 2-8 showed classical, irreversible oxidation potentials for sulfur, selenium and tellurium heteroethers in addition to two one-electron reductions for the anthraquinone carbonyl groups. DFT calculations were also conducted on 1, 2, 3, 6, 6 + Pb(II) and 6 + Mg(II) to determine the trend in energies of the HOMO and the LUMO levels along the series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.