Persistence of intracellular infection depends on the exploitation of factors that negatively regulate the host immune response. In this study, we elucidated the role of macrophage PGE2, an immunoregulatory lipid, in successful survival of Leishmania donovani, causative agent of the fatal visceral leishmaniasis. PGE2 production was induced during infection and resulted in increased cAMP level in peritoneal macrophages through G protein–coupled E-series prostanoid (EP) receptors. Among four different EPs (EP1–4), infection upregulated the expression of only EP2, and individual administration of either EP2-specific agonist, butaprost, or 8-Br–cAMP, a cell-permeable cAMP analog, promoted parasite survival. Inhibition of cAMP also induced generation of reactive oxygen species, an antileishmanial effector molecule. Negative modulation of PGE2 signaling reduced infection-induced anti-inflammatory cytokine polarization and enhanced inflammatory chemokines, CCL3 and CCL5. Effect of PGE2 on cytokine and chemokine production was found to be differentially modulated by cAMP-dependent protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC). PGE2-induced decreases in TNF-α and CCL5 were mediated specifically by PKA, whereas administration of brefeldin A, an EPAC inhibitor, could reverse decreased production of CCL3. Apart from modulating inflammatory/anti-inflammatory balance, PGE2 inhibited antileishmanial IL-17 cytokine production in splenocyte culture. Augmented PGE2 production was also found in splenocytes of infected mice, and administration of EP2 antagonist in mice resulted in reduced liver and spleen parasite burden along with host-favorable T cell response. These results suggest that Leishmania facilitates an immunosuppressive environment in macrophages by PGE2-driven, EP2-mediated cAMP signaling that is differentially regulated by PKA and EPAC.
To reside and multiply successfully within the host macrophages, Leishmania parasites impair the generation of reactive oxygen species (ROS), which are a major host defense mechanism against any invading pathogen. Mitochondrial uncoupling proteins are associated with mitochondrial ROS generation, which is the major contributor of total cellular ROS generation. In the present study we have demonstrated that Leishmania donovani infection is associated with strong upregulation of uncoupling protein 2 (UCP2), a negative regulator of mitochondrial ROS generation located at the inner membrane of mitochondria. Functional knockdown of macrophage UCP2 by small interfering RNA-mediated silencing was associated with increased mitochondrial ROS generation, lower parasite survival, and induction of marked proinflammatory cytokine response. Induction of proinflammatory cytokine response in UCP2 knocked-down cells was a direct consequence of p38 and ERK1/2 MAPK activation, which resulted from ROS-mediated inhibition of protein tyrosine phosphatases (PTPs). Administration of ROS quencher, N-acetyl-l-cysteine, abrogated PTP inhibition in UCP2 knocked-down infected cells, implying a role of ROS in inactivating PTP. Short hairpin RNA-mediated in vivo silencing of UCP2 resulted in decreased Src homology 2 domain-containing tyrosine phosphatase 1 and PTP-1B activity and host-protective proinflammatory cytokine response resulting in effective parasite clearance. To our knowledge, this study, for the first time, reveals the induction of host UCP2 expression during Leishmania infection to downregulate mitochondrial ROS generation, thereby possibly preventing ROS-mediated PTP inactivation to suppress macrophage defense mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.