Summary To characterize somatic alterations in colorectal carcinoma (CRC), we conducted genome-scale analysis of 276 samples, analyzing exome sequence, DNA copy number, promoter methylation, mRNA and microRNA expression. A subset (97) underwent low-depth-of-coverage whole-genome sequencing. 16% of CRC have hypermutation, three quarters of which have the expected high microsatellite instability (MSI), usually with hypermethylation and MLH1 silencing, but one quarter has somatic mismatch repair gene mutations. Excluding hypermutated cancers, colon and rectum cancers have remarkably similar patterns of genomic alteration. Twenty-four genes are significantly mutated. In addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9, and FAM123B/WTX. Recurrent copy number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive CRC and important role for MYC-directed transcriptional activation and repression.
Antiviral responses must rapidly defend against infection while minimizing inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that suppress protein levels by binding target sequences on their cognate mRNA. Here, we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses in primary mouse lung epithelial cells: influenza virus, EMCV, and VSV. We identified the transcriptional network regulated by miR-144 and demonstrate that miR-144 post-transcriptionally suppresses TRAF6 levels. In vivo ablation of miR-144 reduced influenza virus replication in the lung and disease severity. These data suggest that miR-144 reduces the antiviral response by attenuating the TRAF6-IRF7 pathway to alter the cellular antiviral transcriptional landscape.
Independent lines of investigation have documented effects of both transposable elements (TEs) and gene length (GL) on gene expression. However, TE gene fractions are highly correlated with GL, suggesting that they cannot be considered independently. We evaluated the TE environment of human genes and GL jointly in an attempt to tease apart their relative effects. TE gene fractions and GL were compared with the overall level of gene expression and the breadth of expression across tissues. GL is strongly correlated with overall expression level but weakly correlated with the breadth of expression, confirming the selection hypothesis that attributes the compactness of highly expressed genes to selection for economy of transcription. However, TE gene fractions overall, and for the L1 family in particular, show stronger anticorrelations with expression level than GL, indicating that GL may not be the most important target of selection for transcriptional economy. These results suggest a specific mechanism, removal of TEs, by which highly expressed genes are selectively tuned for efficiency. MIR elements are the only family of TEs with gene fractions that show a positive correlation with tissue-specific expression, suggesting that they may provide regulatory sequences that help to control human gene expression. Consistent with this notion, MIR fractions are relatively enriched close to transcription start sites and associated with coexpression in specific sets of related tissues. Our results confirm the overall relevance of the TE environment to gene expression and point to distinct mechanisms by which different TE families may contribute to gene regulation.
Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage, but the mechanisms for establishing the magnitude of response within an infected cell are not well understood. microRNAs are post-transcriptional regulators that are attractive candidates for fine tuning the magnitude of the immune response. We identify miR-144 as a negative regulator of the host antiviral response in the lung. We observed that miR-144 expression resulted in increased replication of influenza, EMCV, and VSV in primary mouse lung epithelial cells. We employed a systems biology approach to identify the transcriptional network regulated by miR-144 and demonstrate that it controls the TRAF6/IRF7 antiviral response by post-transcriptionally suppressing TRAF6 expression. Infection of IRF7-null mice revealed that IRF7 is necessary for normal expression of the network of genes that is perturbed by miR-144. Ectopic IRF7 expression restored the antiviral capacity of cells over-expressing miR-144 and reducing TRAF6 levels using shRNAs recapitulated the miR-144 phenotype. In vivo ablation of miR-144 resulted in reduced influenza replication within the lung. These data suggest that miR-144 regulates activation of the IRF7 pathway, thereby creating an exquisitely controlled antiviral response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.