A completely opposite behavior of electronic localization is revealed in a spatially non-uniform disordered material compared to the traditional spatially uniform disordered one. This fact is substantiated by considering an order-disorder separated (ODS) nanotube and studying the response of non-interacting electrons in presence of magnetic flux. We critically examine the behavior of flux induced energy spectra and circular current for different band fillings, and it is observed that maximum current amplitude (MCA) gradually decreases with disorder strength for weak disorder regime, while surprisingly it (MCA) increases in the limit of strong disorder suppressing the effect of disorder, resulting higher conductivity. This is further confirmed by investigating Drude weight and exactly same anomalous feature is noticed. It clearly gives a hint that localization-to-delocalization transition (LTD) is expected upon the variation of disorder strength which is justified by analyzing the nature of different eigenstates. Our analysis may give some significant inputs in analyzing conducting properties of different doped materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.