Performance of word sense disambiguation (WSD) is one of the challenging tasks in the area of natural language processing (NLP). Generation of sense annotated corpus for multilingual word sense disambiguation is out of reach for most languages even if resources are available. In this paper we propose an unsupervised method using word and sense embedding or improving the performance of these systems using untagged. Corpora and create two bags namely ontological bag and wiki sense bag to generate the senses with highest similarity. Wiki sense bag provides external knowledge to the system required to boost the disambiguation accuracy. We explore Word2Vec model to generate the sense bag and observe significant performance gain for our dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.