Presently, an outbreak of coronavirus is of global concern, as it causes various respiratory problems. It was first detected in December 2019 in China’s Wuhan City where various patients got admitted to the hospitals with a symptom of pneumonia. As the number of cases increased, scientists isolated the samples from patients. Initially, it was named as a novel coronavirus (2019-nCoV) and now renamed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus spread from Wuhan to other cities of China, and currently it is affecting worldwide. Transmission of this virus occurs from one human to another and spreads through contaminated hands or surfaces. Various researchers are trying to explore the potential role of bioactive compounds from plants and different nanomaterials against this virus. Therefore, in this review, an overview of SARS-CoV-2, preventive measures against this viral infection, potential biocides against this virus, and role of phytochemicals and nanomaterials against this virus have been discussed.
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Pesticides are a class of xenobiotic compounds that are recalcitrant and show persistence in the environment for a longer period of time. Research studies have linked their potential for mutagenicity, teratogenicity, and carcinogenicity. The accumulation of pesticides in water sources due to runoff from agricultural lands has posed a serious threat to the biota of the water ecosystem as well as to the human population. Long-term exposure to pesticides can cause neurological disorders, reproductive complications, cancer, immunological, and pulmonary diseases. The use of pesticides has dramatically surged in agricultural as well as nonagricultural practices. Tons of pesticides are applied in the fields, but a limited amount reaches to the target organism while the rest is wasted and gets accumulated in soil or ends up in water sources like groundwater or river, which results in eradication of nontarget organisms. A variety of pesticides are used for pest management, such as organochlorine (DDT), carbamates (carbaryl), organophosphates (malathion), and pyrethroids (pyrethrins). These chemicals are highly toxic to flora and fauna because of their nonbiodegradable and persistence nature. Biomagnification of pesticides usually leads to cause various problems in human beings. Organochlorines like DDT have been banned in many developed countries due to these reasons. Therefore, the removal of pesticides from wastewater and natural water sources is of utmost importance. Conventional methods possess various limitations; therefore, there is a requirement of an alternative method which can efficiently remove these pollutants from the wastewater. In this review, environmental impacts and health-related complications of pesticides and microbial remediation approaches and use of different nanomaterials in the pesticide removal have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.