Multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) offer the potential for rapid molecular phenotyping of tissues, thereby enabling accurate disease detection as well as patient stratification to guide personalized therapies or to monitor treatment outcomes. The clinical success of molecular diagnostics based on SERS NPs would be facilitated by the ability to accurately identify tissue biomarkers under time-constrained staining and detection conditions with a portable device. In vitro, ex vivo and in vivo experiments were performed to optimize the technology and protocols for the rapid detection (0.1-s integration time) of multiple cell-surface biomarkers with a miniature fiber-optic spectral-detection probe following a brief (5 min) topical application of SERS NPs on tissues. Furthermore, we demonstrate that the simultaneous detection and ratiometric quantification of targeted and nontargeted NPs allows for an unambiguous assessment of molecular expression that is insensitive to nonspecific variations in NP concentrations.
Plasmonic nanostructures are extensively used building blocks for engineering optical materials and device architectures. Plasmonic nanocomposites (pNCs) are an emerging class of materials that integrate these nanostructures into hierarchical and often multifunctional systems. These pNCs can be highly customizable by modifying both the plasmonic and matrix components, as well as by controlling the nano- to macroscale morphology of the composite as a whole. Assembly at the nanoscale plays a particularly important role in the design of pNCs that exhibit complex or responsive optical function. Due to their scalability and tunability, pNCs provide a versatile platform for engineering new plasmonic materials and for facile integration into optoelectronic device architectures. This review provides a comprehensive survey of recent achievements in pNC structure, design, fabrication, and optical function, along with some examples of their application in optoelectronics and sensing.
Surface-enhanced Raman scattering (SERS) nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types (“flavors”), each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI), based on the output of a direct classical least-squares (DCLS) demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.
Nonmesoporous Janus silica nanobowls (NBs) are unique in that they possess two different nonporous surfaces per particle for loading biological molecules and can thus be designed with multifunctional properties. Although silica NBs have been successfully employed for both targeted therapeutic and diagnostic applications, their ability to deliver DNA has not yet been fully explored. The purpose of this study was to design and develop an in vitro transfection agent that would exploit the distinct characteristics of the silica NB. First, we determined that the NB surface can be linked to either supercoiled cDNA plasmids or vectorless, linear cDNA constructs. Additionally, the linearized cDNA can be functionalized and chemisorbed on NBs to obtain a controlled release. Second, the successful transfection of cells studied was dependent on lipid coating of the NB (LNBs). Although both NBs and LNBs were capable of undergoing endocytosis, NBs appeared to remain within vesicles as shown by transmission electron microscopy (TEM). Third, fluorescence microscopy and Western blotting assays revealed that transfection of four different cell lines and acutely isolated rat sensory neurons with LNBs loaded with either linear or supercoiled cDNA constructs coding for the fluorescent protein, clover and tdTomato, resulted in protein expression. Fourth, two separate opioid receptor−ion channel signaling pathways were functionally reconstituted in HEK cells transfected with LNBs loaded with three separate cDNA constructs. Overall, these results lay the foundation for the use and further development of LNBs as in vitro transfection agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.