Fragile-X syndrome is a common form of mental retardation resulting from the inability to produce the fragile-X mental retardation protein. Qualitative examination of human brain autopsy material has shown that fragile-X patients exhibit abnormal dendritic spine lengths and shapes on parieto-occipital neocortical pyramidal cells. Similar quantitative results have been obtained in fragile-X knockout mice, that have been engineered to lack the fragile-X mental retardation protein. Dendritic spines on layer V pyramidal cells of human temporal and visual cortices stained using the Golgi-Kopsch method were investigated. Quantitative analysis of dendritic spine length, morphology, and number was carried out on patients with fragile-X syndrome and normal age-matched controls. Fragile-X patients exhibited significantly more long dendritic spines and fewer short dendritic spines than did control subjects in both temporal and visual cortical areas. Similarly, fragile-X patients exhibited significantly more dendritic spines with an immature morphology and fewer with a more mature type morphology in both cortical areas. In addition, fragile-X patients had a higher density of dendritic spines than did controls on distal segments of apical and basilar dendrites in both cortical areas. Long dendritic spines with immature morphologies and elevated spine numbers are characteristic of early development or a lack of sensory experience. The fact that these characteristics are found in fragile-X patients throughout multiple cortical areas may suggest a global failure of normal dendritic spine maturation and or pruning during development that persists throughout adulthood.
Fragile-X syndrome is a common form of mental retardation resulting from the inability to produce the fragile-X mental retardation protein. The specific function of this protein is unknown; however, it has been proposed to play a role in developmental synaptic plasticity. Examination of human brain autopsy material has shown that fragile-X patients exhibit abnormalities in dendritic spine structure and number, suggesting a failure of normal developmental dendritic spine maturation and pruning in this syndrome. Similar results using a knockout mouse model have previously been described; however, it was noted in retrospect that the mice used in that study may have carried a mutation for retinal degeneration, which may have affected cell morphology in the visual cortex of those animals. In this study, dendritic spines on layer V pyramidal cells of visual cortices, taken from fragile-X knockout and wild-type control mice without the retinal degeneration mutation and stained using the Golgi-Cox method, were investigated for comparison with the human condition. Quantitative analyses of the lengths, morphologies, and numbers of dendritic spines, as well as amount of dendritic arbor and dendritic branching complexity, were conducted. The fragile-X mice exhibited significantly more long dendritic spines and significantly fewer short dendritic spines than control mice. Similarly, fragile-X mice exhibited significantly more dendritic spines with an immature-like morphology and significantly fewer with a more mature type morphology. However, unlike the human condition, fragile-X mice did not exhibit statistically significant dendritic spine density differences from controls. Fragile-X mice also did not demonstrate any significant differences from controls in dendritic tree complexity or dendritic arbor. Long dendritic spines with immature morphologies are characteristic of early development or a lack of sensory experience. These results are similar to those found in the human condition and further support a role for the fragile-X mental retardation protein specifically in normal dendritic spine developmental processes. They also support the validity of these mice as a model of fragile-X syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.