a b s t r a c tAflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing preharvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution.
Plant carotenoids, the precursors of vitamin A display several important biological functions as antioxidants and anti-carcinogens. The oilseed crops, owing to their high oil content, form a good matrix for the bioavailability of β-carotene, thereby providing potential targets for biofortification to combat vitamin A deficiency (VAD). However, the screening and characterization of these crops, that otherwise contain very low levels of pro-vitamin A carotenoids has been difficult owing to their poor recovery and strong binding to the oil matrix. Here, we report a rapid method for high volume HPLC analysis involving the extraction and determination of β-carotene in four oilseed crops (peanut, soybean, sunflower and mustard). This included a comprehensive study of the factors that potentially influence the qualitative and quantitative yields of β-carotene in these crops. This is the first crop-independent HPLC method for the quantification of pro-vitamin A carotenoids that shows excellent recovery and reproducibility (>90 percentage recovery in oil) using small tissue sample and is capable of processing up to 30 samples per day. The protocol is sensitive, and enables better detection and separation of individual carotenoids by reducing artefacts during extraction, purification and chromatography that can be used for routine screening of oilseeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.