Understanding the low-frequency radio sky in depth is necessary to subtract foregrounds in order to detect the redshifted 21 cm signal of neutral hydrogen from the cosmic dawn, the epoch of reionization and the post-reionization era. In this second paper of the series, we present the upgraded Giant Metrewave Radio Telescope (uGMRT) observation of the ELAIS N1 field made at 300–500 MHz. The image covers an area of ∼1.8 deg2 and has a central background rms noise of ∼ 15 μJy beam−1. We present a radio source catalogue containing 2528 sources (with flux densities > 100 μJy) and normalized source counts derived from that. A detailed comparison of detected sources with previous radio observations is shown. We discuss flux-scale accuracy, positional offsets, spectral index distribution and correction factors in source counts. The normalized source counts are in agreement with previous observations of the same field, as well as model source counts from the Square Kilometre Array Design Study simulation. It shows a flattening below ∼1 mJy that corresponds to a rise in populations of star-forming galaxies and radio-quiet active galactic nuclei. For the first time, we estimate the spectral characteristics of the angular power spectrum or multi-frequency angular power spectrum of diffuse Galactic synchrotron emission over a wide frequency bandwidth of 300–500 MHz from radio interferometric observations. This work demonstrates the improved capabilities of the uGMRT.
Measurement of fluctuations in diffuse Hi 21 cm background radiation from the post-reionization epoch (z ≤ 6) is a promising avenue to probe the large-scale structure of the universe and understand the evolution of galaxies. We observe the European Large Area ISO Survey-North 1 (ELAIS-N1) field at 300–500 MHz using the upgraded Giant Meterwave Radio Telescope (uGMRT) and employ the “foreground avoidance” technique to estimate the Hi 21 cm power spectrum in the redshift range z = 1.96–3.58. Given the possible systematics that may remain in the data, we find the most stringent upper limits on the spherically averaged 21 cm power spectra at k ∼ 1.0 Mpc−1 are (58.87 mK)2, (61.49 mK)2, (60.89 mK)2, and (105.85 mK)2 at z = 1.96, 2.19, 2.62, and 3.58, respectively. We use this to constrain the product of neutral Hi mass density (ΩHI) and Hi bias (b HI) to the underlying dark matter density field, [ΩHI b HI], as 0.09, 0.11, 0.12, and 0.24 at z = 1.96, 2.19, 2.62, and 3.58, respectively. To the best of our knowledge these are the first limits on the Hi 21 cm power spectra at the redshift range z = 1.96–3.58 and would play a significant role to constrain the models of galaxy formation and evolution.
The study of the cosmic Dark Ages, Cosmic Dawn, and Epoch of Reionization (EoR) using the all-sky averaged redshifted HI 21cm signal, are some of the key science goals of most of the ongoing or upcoming experiments, for example, EDGES, SARAS, and the SKA. This signal can be detected by averaging over the entire sky, using a single radio telescope, in the form of a Global signal as a function of only redshifted HI 21cm frequencies. One of the major challenges faced while detecting this signal is the dominating, bright foreground. The success of such detection lies in the accuracy of the foreground removal. The presence of instrumental gain fluctuations, chromatic primary beam, radio frequency interference (RFI) and the Earth's ionosphere corrupts any observation of radio signals from the Earth. Here, we propose the use of Artificial Neural Networks (ANN) to extract the faint redshifted 21cm Global signal buried in a sea of bright Galactic foregrounds and contaminated by different instrumental models. The most striking advantage of using ANN is the fact that, when the corrupted signal is fed into a trained network, we can simultaneously extract the signal as well as foreground parameters very accurately. Our results show that ANN can detect the Global signal with 92% accuracy even in cases of mock observations where the instrument has some residual time-varying gain across the spectrum.
In this first paper of the series, we present initial results of newly upgraded Giant Meterwave Radio Telescope (uGMRT) observation of European Large-Area ISO Survey-North 1 (ELAIS-N1) at 325 MHz with 32 MHz bandwidth. Precise measurement of fluctuations in Galactic and extragalactic foreground emission as a function of frequency as well as angular scale is necessary for detecting redshifted 21-cm signal of neutral hydrogen from Cosmic Dawn, Epoch of Reionization (EoR) and post-reionization epoch. Here, for the first time we have statistically quantified the Galactic and extragalactic foreground sources in the ELAIS-N1 field in the form of angular power spectrum using the newly developed Tapered Gridded Estimator (TGE). We have calibrated the data with and without direction-dependent calibration techniques. We have demonstrated the effectiveness of TGE against the direction dependent effects by using higher tapering of field of view (FoV). We have found that diffuse Galactic synchrotron emission (DGSE) dominates the sky, after point source subtraction, across the angular multipole range 1115 5083 and 1565 4754 for direction-dependent and -independent calibrated visibilities respectively. The statistical fluctuations in DGSE has been quantified as a power law of the form C = A −β . The best fitted values of (A, β) are (62 ± 6 mK 2 , 2.55 ± 0.3) and (48 ± 4 mK 2 , 2.28 ± 0.4 ) for the two different calibration approaches. For both the cases, the power law index is consistent with the previous measurements of DGSE in other parts of sky.
The redshifted 21-cm signal of neutral Hydrogen is a promising probe into the period of evolution of our Universe when the first stars were formed (Cosmic Dawn), to the period where the entire Universe changed its state from being completely neutral to completely ionized (Reionization). The most striking feature of this line of neutral Hydrogen is that it can be observed across an entire frequency range as a sky-averaged continuous signature, or its fluctuations can be measured using an interferometer. However, the 21-cm signal is very faint and is dominated by a much brighter Galactic and extra-galactic foregrounds, making it an observational challenge. We have used different physical models to simulate various realizations of the 21-cm Global signals, including an excess radio background to match the amplitude of the EDGES 21-cm signal. First, we have used an artificial neural network (ANN) to extract the astrophysical parameters from these simulated datasets. Then, mock observations were generated by adding a physically motivated foreground model and an ANN was used to extract the astrophysical parameters from such data. The R2 score of our predictions from the mock-observations is in the range of 0.65-0.89. We have used this ANN to predict the signal parameters giving the EDGES data as the input. We find that the reconstructed signal closely mimics the amplitude of the reported detection. The recovered parameters can be used to infer the physical state of the gas at high redshifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.