The anticodon stem of initiator tRNA (i‐tRNA) possesses the characteristic three consecutive GC base pairs (G29:C41, G30:C40, and G31:C39 abbreviated as GC/GC/GC or 3GC pairs) crucial to commencing translation. To understand the importance of this highly conserved element, we isolated two fast‐growing suppressors of Escherichia coli sustained solely on an unconventional i‐tRNA (i‐tRNAcg/GC/cg) having cg/GC/cg sequence instead of the conventional GC/GC/GC. Both suppressors have the common mutation of V93A in initiation factor 3 (IF3), and additional mutations of either V32L (Sup‐1) or H76L (Sup‐2) in small subunit ribosomal protein 12 (uS12). The V93A mutation in IF3 was necessary for relaxed fidelity of i‐tRNA selection to sustain on i‐tRNAcg/GC/cg though with a retarded growth. Subsequent mutations in uS12 salvaged the retarded growth by enhancing the fidelity of translation. The H76L mutation in uS12 showed better fidelity of i‐tRNA selection. However, the V32L mutation compensated for the deficient fidelity of i‐tRNA selection by ensuring an efficient fidelity check by ribosome recycling factor (RRF). We reveal unique genetic networks between uS12, IF3 and i‐tRNA in initiation and between uS12, elongation factor‐G (EF‐G), RRF, and Pth (peptidyl‐tRNA hydrolase) which, taken together, govern the fidelity of translation in bacteria.
Most oral cancers arise from oral potentially malignant lesions, which show varying grades of dysplasia. Risk of progression increases with increasing grade of dysplasia; however, risk prediction among oral low-grade dysplasia (LGD), that is, mild and moderate dysplasia can be challenging as only 5%–15% transform. Moreover, grading of dysplasia is subjective and varies with the area of the lesion being biopsied. To date, no biomarkers or tools are used clinically to triage oral LGDs. This study uses a combination of DNA ploidy and chromatin organization (CO) scores from cells obtained from lesion brushings to identify oral LGDs at high-risk of progression. A total of 130 lesion brushings from patients with oral LGDs were selected of which 16 (12.3%) lesions progressed to severe dysplasia or cancer. DNA ploidy and CO scores were analyzed from nuclear features measured by our in-house DNA image cytometry (DNA-ICM) system and used to classify brushings into low-risk and high-risk. A total of 57 samples were classified as high-risk of which 13 were progressors. High-risk DNA brushing was significant for progression (P = 0.001) and grade of dysplasia (P = 0.004). Multivariate analysis showed high-risk DNA brushing showed 5.1- to 8-fold increased risk of progression, a stronger predictor than dysplasia grading and lesion clinical features. DNA-ICM can serve as a non-invasive, high-throughput tool to identify high-risk lesions several years before transformation. This will help clinicians focus on such lesions whereas low-risk lesions may be spared from unnecessary biopsies.
Prevention Relevance: DNA ploidy and chromatin organization of cells collected from oral potentially malignant lesions (OPMLs) can identify lesions at high-risk of progression several years prior. This non-invasive test would enable clinicians to triage high-risk (OPMLs) for closer follow-up while low-risk lesions can undergo less frequent biopsies reducing burden on healthcare resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.