Design methodology for a special single winding based bearingless switched reluctance motor Abstract: Bearingless switched reluctance motors (BSRMs) have both magnetic bearing as well as conventional motor characteristics which make them suitable for diverse industrial applications. This study proposes a design methodology for a BSRM in order to calculate the appropriate geometrical dimensions essential for realising a minimum levitation force at every orientation of rotor. It is based on the stator-rotor overlap angle and helps in reducing the complexities associated with the self-bearing operation of a switched reluctance motor (SRM). Different from a conventional SRM, the motor under study deploys a special single set parallel winding scheme for simultaneous production of torque as well as radial force. An analytical model incorporating this single set winding is developed for calculating the torque and the radial force. The proposed bearingless design is verified by developing a two-dimensional finite-element model of a 12/8 SRM in ANSYS Maxwell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.