The purpose of this article is to derive a posteriori error estimates for the H 1 -Galerkin mixed finite element method for parabolic problems. We study both semidiscrete and fully discrete a posteriori error analyses using standard energy argument. A fully discrete a posteriori error analysis based on the backward Euler method is analysed and upper bounds for the errors are derived. The estimators yield upper bounds for the errors which are global in space and time. Our analysis is based on residual approach and the estimators are free from edge residuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.