Recommender systems provide suggestions to the users for choosing particular items from a large pool of items. The purpose of this study is to design a collaborative recommender system for the farmers for recommending giving prior idea regarding a crop which is suitable according to the location of the farmer based on weather condition of the previous months. The proposed system also recommends other seeds, pesticides and instruments according to the preferences in farming and location of the farmers while purchasing the seeds through online. It uses cosine similarity measure to find the similar user according the location of the farmer and fuzzy logic for predicting the yield of rice crop for Kharif season in state Odisha, India. The proposed system is implemented in Mamdani Fuzzy Inference model. The results reveal that it provides prior idea regarding a crop before sowing of seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.