Background Aldosterone, synthesized in the adrenal cortex by the enzyme CYP11B2, induces positive sodium balance and predisposes to hypertension. Various investigators, using genomic DNA analyses, have linked −344T polymorphism in the hCYP11B2 gene to human hypertension. Human CYP11B2 gene promoter has three SNPs in linkage disequilibrium: T/A at −663, T/C at −470 and C/T at −344. Variants ACT occur together and form the haplotype-I while variants TTC constitute haplotype-II. We hypothesize that these SNPs, when present together, will lead to haplotype-dependent differences in the transcriptional regulation of the hCYP11B2 gene and affect blood pressure regulation. Methods and Results We evaluated differences in tissue expression, in vivo, and consequential effects on blood pressure stemming from the two haplotypes. Novel transgenic (TG) mice with the hCYP11B2 gene, targeted to the mouse HPRT locus, with either haplotype-II or I variant are used in the study. Our results show increased adrenal and renal expression of hCYP11B2 in TG mice with haplotype-I, as compared to mice with haplotype-II. Importantly, we observed increased baseline blood pressure in haplotype-I TG mice, an effect accentuated by a high-salt diet. Pathophysiological impact of elevated aldosterone was corroborated by our results showing up-regulation of proinflammatory markers in renal tissues from the TG mice with haplotype-I. Conclusions These findings characterize haplotype-dependent regulation of the hCYP11B2 gene where −344T serves as a reporter polymorphism and show that haplotype-I leads to increased expression of hCYP11B2, with permissive effects on blood pressure and inflammatory milieu.
Aldosterone, synthesized by the enzyme CYP11B2, induces positive sodium-balance and predisposes to hypertension. Various investigators, using genomic DNA analyses, have linked -344T polymorphism in the hCYP11B2 gene to human hypertension. We have identified three SNPs, in linkage disequilibrium, in the hCYP11B2 gene: T/A at -663, T/C at -470 and C/T at -344. Variants ACT occur together and form the haplotype I (Hap I) while variants TTC constitute haplotype II (Hap II). We hypothesize that these SNPs, when present together, will lead to haplotype-dependent transcription of the hCYP11B2 gene, differentially increase aldosterone and affect blood pressure. To this end, novel transgenic (TG) mice with the hCYP11B2 gene, targeted to the mHPRT locus, with either haplotype II or I variant are used in the study. ChIP assay, using anti-RNA pol II antibody, shows increased Pol II binding to the chromatin from Hap I TG mice in adrenal (2.8 fold higher, p<0.05) and renal tissues (1.3 fold higher, p<0.05) as compared to chromatin extracts from Hap II TG mice. Immunoblot analysis shows upregulation of the hCYP11B2 in adrenal (2.7 fold higher, p<0.05) and renal tissues (1.35 fold higher, p<0.05) of Hap I vs. Hap II-TG mice; no significant difference was observed in mCYP11B2 between the two haplotypes. Complementary ELISA shows higher circulating levels (p<0.05) of aldosterone in Hap I mice (1504±48.7 pg/mL) as compared to both, Hap II (778±142.8 pg/mL) and C57 mice (740±28.9 pg/mL). Importantly, we observed increased baseline blood pressure in Hap I TG mice (Hap I- 117±2.5 vs. Hap II- 109±1.9 mm Hg, p<0.05), an effect accentuated by high-salt diet (Hap I- 135±2.6 vs. Hap II- 122±2.2 mm Hg, p<0.05). Elevated aldosterone was accompanied by up-regulation (p<0.05) of proinflammatory markers in renal tissues from Hap I TG mice (IL1β, MCP1, ICAM). Thus, this study identifies -344T as a reporter polymorphism for Hap I of the hCYP11B2 gene. SNPs in Hap I promote increased transcription and expression of the gene, in multiple tissues, with resultant elevation of plasma aldosterone levels. Pathophysiological impact of this haplotype-dependent transcriptional regulation of the hCYP11B2 is highlighted by increased inflammation and blood pressure in TG mice with the Hap I of this transgene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.