Summary In seeds and other parts of cultivated, tetraploid cotton ( Gossypium hirsutum L.), multicellular groups of cells lysigenously form dark glands containing toxic terpenoids such as gossypol that defend the plant against pests and pathogens. Using RNA ‐seq analysis of embryos from near‐isogenic glanded ( Gl 2 Gl 2 Gl 3 Gl 3 ) versus glandless ( gl 2 gl 2 gl 3 gl 3 ) plants, we identified 33 genes that expressed exclusively or at higher levels in embryos just prior to gland formation in glanded plants. Virus‐induced gene silencing against three gene pairs led to significant reductions in the number of glands in the leaves, and significantly lower levels of gossypol and related terpenoids. These genes encode transcription factors and have been designated the ‘Cotton Gland Formation’ ( CGF ) genes. No sequence differences were found between glanded and glandless cotton for CGF 1 and CGF 2 gene pairs. The glandless cotton has a transposon insertion within the coding sequence of the Go PGF (synonym CGF 3 ) gene of the A subgenome and extensive mutations in the promoter of D subgenome homeolog. Overexpression of Go PGF (synonym CGF 3 ) led to a dramatic increase in gossypol and related terpenoids in cultured cells, whereas CRISPR /Cas9 knockout of Go PGF (synonym CGF 3 ) genes resulted in glandless phenotype. Taken collectively, the results show that the Go PGF (synonym CGF 3 ) gene plays a critical role in the formation of glands in the cotton plant. Seed‐specific silencing of CGF genes, either individually or in combination, could eliminate glands, thus gossypol, from the cottonseed to render it safe as food or feed for monogastrics.
SignificanceAn increasing number of herbicide-resistant weeds are being reported in the United States, Argentina, and Brazil. This is becoming a global challenge for the production of several major crops, such as cotton, maize, and soybean. New strategies for weed control are required to sustain agricultural production while reducing our dependence on herbicides. Here, we report that selective fertilization of transgenic cotton, expressing a bacterial phosphite dehydrogenase (PTXD), with phosphite provides an effective way to suppress weed growth. Importantly, we show that the ptxD-transgenic cotton plants successfully outcompete a highly aggressive glyphosate-resistant weed. The ptxD/phosphite system represents one of the most promising technologies of recent times with potential to solve many of the agricultural and environmental problems that we encounter currently.
Kidney development involves formation of nephrons intricately aligned with the vasculature and connected to a branched network of collecting ducts. Notch signaling plays multiple roles during kidney development involving the formation of nephrons composed of diverse epithelial cell types arranged into tubular segments, all the while maintaining a nephron progenitor niche. Here, we review the roles of Notch signaling identified from rodent kidney development and injury studies, while discussing human kidney diseases associated with aberrant Notch signaling. We also review Notch signaling requirement in maintenance of mature kidney epithelial cell states and speculate that Notch activity regulation mediates certain renal physiologic adaptations.
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.
This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops. Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~ 97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.