Clinical questionWhat is the role of drug interventions in the treatment and prevention of covid-19?RecommendationsThe first version on this living guidance focuses on corticosteroids. It contains a strong recommendation for systemic corticosteroids in patients with severe and critical covid-19, and a weak or conditional recommendation against systemic corticosteroids in patients with non-severe covid-19. Corticosteroids are inexpensive and are on the World Health Organisation list of essential medicines.Howthis guideline was created This guideline reflects an innovative collaboration between the WHO and the MAGIC Evidence Ecosystem Foundation, driven by an urgent need for global collaboration to provide trustworthy and living covid-19 guidance. A standing international panel of content experts, patients, clinicians, and methodologists, free from relevant conflicts of interest, produce recommendations for clinical practice. The panel follows standards, methods, processes, and platforms for trustworthy guideline development using the GRADE approach. We apply an individual patient perspective while considering contextual factors (that is, resources, feasibility, acceptability, equity) for countries and healthcare systems.The evidenceA living systematic review and network meta-analysis, supported by a prospective meta-analysis, with data from eight randomised trials (7184 participants) found that systemic corticosteroids probably reduce 28 day mortality in patients with critical covid-19 (moderate certainty evidence; 87 fewer deaths per 1000 patients (95% confidence interval 124 fewer to 41 fewer)), and also in those with severe disease (moderate certainty evidence; 67 fewer deaths per 1000 patients (100 fewer to 27 fewer)). In contrast, systemic corticosteroids may increase the risk of death in patients without severe covid-19 (low certainty evidence; absolute effect estimate 39 more per 1000 patients, (12 fewer to 107 more)). Systemic corticosteroids probably reduce the need for invasive mechanical ventilation, and harms are likely to be minor (indirect evidence).Understanding the recommendationsThe panel made a strong recommendation for use of corticosteroids in severe and critical covid-19 because there is a lower risk of death among people treated with systemic corticosteroids (moderate certainty evidence), and they believe that all or almost all fully informed patients with severe and critical covid-19 would choose this treatment. In contrast, the panel concluded that patients with non-severe covid-19 would decline this treatment because they would be unlikely to benefit and may be harmed. Moreover, taking both a public health and a patient perspective, the panel warned that indiscriminate use of any therapy for covid-19 would potentially rapidly deplete global resources and deprive patients who may benefit from it most as potentially lifesaving therapy.UpdatesThis is a living guideline. Work is under way to evaluate other interventions. New recommendations will be published as updates to this guideline.Readers noteThis is version 1 of the living guideline, published on 4 September (BMJ 2020;370:m3379) version 1. Updates will be labelled as version 2, 3 etc. When citing this article, please cite the version number.SubmittedAugust 28AcceptedAugust 31
Objective: To assess the number of adult critical care beds in Asian countries and regions in relation to population size. Design: Cross-sectional observational study. Setting: Twenty-three Asian countries and regions, covering 92.1% of the continent’s population. Participants: Ten low-income and lower-middle–income economies, five upper-middle–income economies, and eight high-income economies according to the World Bank classification. Interventions: Data closest to 2017 on critical care beds, including ICU and intermediate care unit beds, were obtained through multiple means, including government sources, national critical care societies, colleges, or registries, personal contacts, and extrapolation of data. Measurements and Main Results: Cumulatively, there were 3.6 critical care beds per 100,000 population. The median number of critical care beds per 100,000 population per country and region was significantly lower in low- and lower-middle–income economies (2.3; interquartile range, 1.4–2.7) than in upper-middle–income economies (4.6; interquartile range, 3.5–15.9) and high-income economies (12.3; interquartile range, 8.1–20.8) (p = 0.001), with a large variation even across countries and regions of the same World Bank income classification. This number was independently predicted by the World Bank income classification on multivariable analysis, and significantly correlated with the number of acute hospital beds per 100,000 population (r 2 = 0.19; p = 0.047), the universal health coverage service coverage index (r 2 = 0.35; p = 0.003), and the Human Development Index (r 2 = 0.40; p = 0.001) on univariable analysis. Conclusions: Critical care bed capacity varies widely across Asia and is significantly lower in low- and lower-middle–income than in upper-middle–income and high-income countries and regions.
Writing Committee for the REMAP-CAP Investigators IMPORTANCE The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive.OBJECTIVE To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTSThe ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONSThe immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURESThe primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, −1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11...
IMPORTANCEThe efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain.OBJECTIVE To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTSIn an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021).INTERVENTIONS Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. MAIN OUTCOMES AND MEASURESThe primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. RESULTSThe aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI,; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm).CONCLUSIONS AND RELEVANCE Among crit...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.