DNA double-strand breaks (DSBs) are one of the most dangerous assaults on the genome, and yet their natural and programmed production are inherent to life. When DSBs arise close together (clustered) they are particularly deleterious, and their repair may require an altered form of the DNA damage response. Our understanding of how clustered DSBs are repaired in the germline is unknown. Using UV laser microirradiation, we examine early events in the repair of clustered DSBs in germ cells within whole, live, Caenorhabditis elegans. We use precise temporal resolution to show how the recruitment of MRE-11 to complex damage is regulated, and that clustered DNA damage can recruit proteins from various repair pathways. Abrogation of nonhomologous end joining or COM-1 attenuates the recruitment of MRE-11 through distinct mechanisms. The synaptonemal complex plays both positive and negative regulatory roles in these mutant contexts. These findings together indicate that MRE-11 is regulated by modifying its accessibility to chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.