Additive manufacturing via melt electrowriting (MEW) can create ordered microfiber scaffolds relevant for bone tissue engineering; however, there remain limitations in the adoption of new printing materials, especially in MEW of biomaterials. For example, while promising composite formulations of polycaprolactone with strontium‐substituted bioactive glass have been processed into large or disordered fibres, from what is known, biologically‐relevant concentrations (>10 wt%) have never been printed into ordered microfibers using MEW. In this study, rheological characterization is used in combination with a predictive mathematical model to optimize biomaterial formulations and MEW conditions required to extrude various PCL and PCL/SrBG biomaterials to create ordered scaffolds. Previously, MEW printing of PCL/SrBG composites with 33 wt% glass required unachievable extrusion pressures. The composite formulation is modified using an evaporable solvent to reduce viscosity 100‐fold to fall within the predicted MEW pressure, temperature, and voltage tolerances, which enabled printing. This study reports the first fabrication of reproducible, ordered high‐content bioactive glass microfiber scaffolds by applying predictive modeling.
Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
Current biomaterial-based strategies explored to treat articular cartilage defects have failed to provide adequate physico-chemical cues in order to guide functional tissue regeneration. Here, it is hypothesized that atmospheric-pressure plasma (APPJ) treatment and melt electrowriting (MEW) will produce microfiber support structures with covalently-immobilized transforming growth factor beta-1 (TGFβ1) that can stimulate the generation of functional cartilage tissue. The effect of APPJ operational speeds to activate MEW polycaprolactone meshes for immobilization of TGFβ1 is first investigated and chondrogenic differentiation and neo-cartilage production are assessed in vitro. All APPJ speeds test enhanced hydrophilicity of the meshes, with the slow treatment speed having significantly less CC/CH and more COOH than the untreated meshes. APPJ treatment increases TGFβ1 loading efficiency. Additionally, in vitro experiments highlight that APPJ-based TGFβ1 attachment to the scaffolds is more advantageous than direct supplementation within the medium. After 28 days of culture, the group with immobilized TGFβ1 has significantly increased compressive modulus (more than threefold) and higher glycosaminoglycan production (more than fivefold) than when TGFβ1 is supplied through the medium. These results demonstrate that APPJ activation allows reagentfree, covalent immobilization of TGFβ1 on microfiber meshes and, importantly, that the biofunctionalized meshes can stimulate neo-cartilage matrix formation. This opens new perspectives for guided tissue regeneration.
To progress cardiac tissue engineering strategies closer to the clinic, thicker constructs are required to meet the functional need following a cardiac event. Consequently, pre-vascularization of these constructs needs to be investigated to ensure survival and optimal performance of implantable engineered heart tissue. The aim of this research is to investigate the potential of combining extrusion-based bioprinting and melt electrowriting for the fabrication of a myocardial construct with a precisely patterned pre-vascular pathway. Gelatin methacryloyl (GelMA) was investigated as a base hydrogel for the respective myocardial and vascular bioinks with collagen, Matrigel and fibrinogen as interpenetrating polymers to support myocardial functionality. Subsequently, extrusion-based printability and viability were investigated to determine the optimal processing parameters for printing into melt electrowritten meshes. Finally, an anatomically inspired vascular pathway was implemented in a dual extrusion-based bioprinting set-up into melt electrowritten meshes, creating a patterned pre-vascularized myocardial construct. It was determined that a blend of 5% GelMA and 0.8 mgmL-1 collagen with a low crosslinked density was optimal for myocardial cellular arrangement and alignment within the constructs. For the vascular fraction, the optimized formulation consisted of 5% GelMA, 0.8 mgmL-1 collagen and 1 mgmL-1 fibrinogen with a higher crosslinked density, which led to enhanced vascular cell connectivity. Printability assessment confirmed that the optimized bioinks could effectively fill the microfiber mesh while supporting cell viability (~70%). Finally, the two bioinks were applied using a dual extrusion-based bioprinting system for the fabrication of a pre-vascular pathway with the shape of a left anterior descending artery within a myocardial construct, whereby the distinct cell populations could be visualized in their respective patterns for up to 14 days in culture. This research investigated the first step towards developing a thick engineered cardiac tissue construct in which a pre-vascularization pathway is fabricated within a myocardial construct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.