The Asian cockroach, Blattella asahinai Mizukubo, has expanded its range throughout the southeastern United States since its introduction into Florida. Unlike its closest relative, the German cockroach, Blattella germanica (L.), B. asahinai lives outdoors and can fly. There is little information on the biology and development of B. asahinai, including the number of instars during nymphal development. To estimate the number of instars of B. asahinai, nymphs were photographed, sexed, and the lengths and widths of their pronota were measured digitally. The number of instars of B. asahinai was estimated using Gaussian mixture models with the pronotal data. The most probable model and its clusters were selected to assign individuals to an instar. Instars were also determined by counting the number of cercal annuli of nymphs. Both clustering and cercal annuli indicated that B. asahinai most frequently had six instars when reared at 30°C. Growth did not strictly follow the Brooks-Dyar Rule, because nymphs had different numbers of instars and different growth patterns. Although Gaussian mixture models are not efficient for field sampling experiments, digital measurements may provide a way to estimate instars with live specimens in development studies without handling the animals in a way that may alter growth.
The Asian cockroach, Blattella asahinai Mizukubo, is a peridomestic nuisance pest in the southeastern United States. Blattella asahinai is the closest relative to Blattella germanica (L.), the German cockroach, one of the most prolific and widespread domestic pests. Because these two species live in different habitats, they are expected to have differential development patterns reflecting environmental adaptations. Development of B. asahinai and B. germanica cockroach nymphs were observed at six constant temperatures ranging from 10 to 35 °C. At 10 °C and 15 °C, all nymphs died in the first instar, but B. germanica nymphs survived longer (10 °C: 12.9 d; 15 °C: 42.9 d) than B. asahinai nymphs (10 °C 8.2 d; 15 °C 18.4 d) at both temperatures. At 20 °C, 25 °C, and 30 °C, B. asahinai consistently had more instars and longer stadia than B. germanica. At 35 °C, only B. germanica was able to complete nymphal development; cannibalism among B. asahinai nymphs during molting was often observed at this temperature. The results for B. asahinai corroborated previously estimated growth patterns. The lower nymphal development threshold was 14.1 °C for B. germanica and 13.7 °C for B. asahinai. Comparing the development of B. germanica directly with its closest relative reveals specific physiological adaptations that B. germanica has developed for the indoor biome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.