Heavy ice conditions along Canada's east coast during spring 2017 presented hazardous conditions for the maritime industry and required the Canadian Coast Guard to pull its research icebreaker, CCGS Amundsen, off its scientific cruise to provide ice escort services and conduct search and rescue operations along Newfoundland's northeast coast. Greater ice concentrations and a thicker ice pack than are typical of this area created the anomalous ice cover. Within this paper we present in situ observations of the ice cover, confirming that pieces of multiyear sea ice from the high Arctic were present within the ice cover, and subsequently examine the transport pathway that connects the export of thick multiyear sea ice from the Lincoln Sea and Canadian Arctic Archipelago to coastal communities in Newfoundland. We conclude with a discussion on how an increasingly mobile Arctic sea ice cover may increase these ice hazards in the south.
Oil spills in the Arctic are becoming more likely as shipping traffic increases in response to climate-related sea ice loss. To improve oil spill detection capability, we used a controlled mesocosm to analyze the multipolarized C-band backscatter response of oil in newly formed sea ice (NI). Artificial sea ice was grown in two cylindrical tubs at the Sea-ice Environmental Research Facility, University of Manitoba. The sea ice physical characteristics, including surface roughness, thickness, temperature, and salinity, were measured before and after oil injection below the ice sheet. Time-series C-band radar backscatter measurements detected the differences in the sea ice evolution and oil migration to the sea ice surface in the oilcontaminated tub, which was compared to uncontaminated ice in a control tub. Immediately prior to the presence of oil on the ice surface, the copolarized backscatter is increased by 13-dB local maximum, while the cross-polarized backscatter is decreased by 9-dB. Ice physical properties suggest that the local backscatter maximum and minimum, which occurred immediately before oil migrated onto the surface, were related to a combination of brine and oil upward migration. The findings of this work provide a baseline data interpretation for oil detection in the Arctic Ocean using current and future C-band multipolarization radar satellites.
Pertinent environmental factors influencing the microalgal bloom during sea-ice breakup in Hudson Bay were investigated in June 2018, producing the first observations of late spring primary production in the offshore waters of this vast inland sea. Phytoplankton production was found to commence at the onset of ice melt, with surface nutrient depletion leading to the formation of a subsurface chlorophyll maximum in the open waters of western Hudson Bay. Concurrently, the melting mobile ice cover in central Hudson Bay created favorable conditions for a diatom-dominated under-ice bloom, with photosynthetic characteristics and relatively high production confirming that phytoplankton cells were able to acclimate to increasing light levels. Lower mean values of phytoplankton production and total chlorophyll a (TChl a) concentration observed under the sea ice (414 mg C m–2 d–1 and 33.7 mg TChl a m–2) than those observed in open waters during the late bloom stage in the western region (460 mg C m–2 d–1 and 53.5 mg TChl a m–2) were attributed to reduced under-ice light levels and low surface concentrations of dissolved inorganic nitrogen (<2 μmol L–1) in central Hudson Bay. However, the highly abundant subice diatom, Melosira arctica, was estimated to contribute an additional 378 mg C m–2 d–1 to under-ice production in this region. Therefore, this subice algal bloom appears to play a similar role in the seasonally ice-covered sub-Arctic as in the central Arctic Ocean where it contributes significantly to local production. By updating historical total production estimates of Hudson Bay ranging between 21.5 and 39 g C m–2 yr–1 with our late spring observations including the novel observation of M. arctica, annual production was recalculated to be 72 g C m–2 yr–1, which equates to mean values for interior Arctic shelves.
During a research expedition in Hudson Bay in June 2018, vast areas of thick (>10 m), deformed sediment-laden sea ice were encountered unexpectedly in southern Hudson Bay and presented difficult navigation conditions for the Canadian Coast Guard Ship Amundsen. An aerial survey of one of these floes revealed a maximum ridge height of 4.6 m and an average freeboard of 2.2 m, which corresponds to an estimated total thickness of 18 m, far greater than expected within a seasonal ice cover. Samples of the upper portion of the ice floe revealed that it was isothermal and fresh in areas with sediment present on the surface. Fine-grained sediment and larger rocks were visible on the ice surface, while a pronounced sediment band was observed in an ice core. Initial speculation was that this ice had formed in the highly dynamic Nelson River estuary from freshwater, but δ18O isotopic analysis revealed a marine origin. In southern Hudson Bay, significant tidal forcing promotes both sediment resuspension and new ice formation within a flaw lead, which we speculate promotes the formation of this sediment-laden sea ice. Historic satellite imagery shows that sediment-laden sea ice is typical of southern Hudson Bay, varying in areal extent from 47 to 118 km2 during June. Based on an average sediment particle concentration of 0.1 mg mL–1 in sea ice, an areal extent of 51,924 km2 in June 2018, and an estimated regional end-of-winter ice thickness of 1.5 m, we conservatively estimated that a total sediment load of 7.8 × 106 t, or 150 t km–2, was entrained within sea ice in southern Hudson Bay during winter 2018. As sediments can alter carbon concentrations and light transmission within sea ice, these first observations of this ice type in Hudson Bay imply biogeochemical impacts for the marine system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.