Packaging technology is evolving, and the objectives of this study were to evaluate instrumental surface color, expert color evaluation, and lipid oxidation (TBARS) on beef longissimus lumborum steaks packaged in vacuum-ready packaging (VRF) or polyvinyl chloride (PVC) overwrap packaging. Paired strip loins (Institutional Meat Purchasing Specifications # 180) were cut into 2.54-cm-thick steaks and assigned randomly to one of two packaging treatments, VRF or PVC. Steaks packaged in VRF were lighter in color (p < 0.05) as the display period increased, whereas steaks packaged in PVC became darker (p < 0.05). Redness (a*) values were greater (p < 0.05) for PVC steaks until day 5, whereas VRF steaks had a greater (p < 0.05) surface redness from day 10 to 35 of the display period. Calculated spectral values of red to brown were greater (p < 0.05) for steaks in VRF than PVC. In addition, expert color evaluators confirmed VRF steaks were less brown and less discolored (p < 0.05) from day 5 to 35 of the display. Nonetheless, lipid oxidation was greater (p < 0.05) for PVC steaks from day 10 through day 35 of the display. Results from this study suggest that the use of vacuum packaging for beef steaks is plausible for maintaining surface color characteristics during extended display periods.
The consumer acceptance of alternative plant-focused ingredients within the meat industry is growing globally. Oat protein is insoluble and used to increase product yield and fat retention. Furthermore, inclusion of oat protein can provide manufacturers another option for extending beef supplies. As the consumer diet shifts for improvements in nutritional density, oat protein is an alternative ingredient that lacks information on inclusion in a ground beef formulation. Coarse ground beef was allocated to one of four treatments, mixed with oat protein (0%, 1.5%, 3.5% and 4.5%), water, salt, pepper, textured vegetable protein, soy protein concentrate, and sodium tripolyphosphate. Meat blocks (n = 3 batches) were finely ground and formed into patties (N = 65/treatment). Patties were placed onto an expanded polystyrene tray, overwrapped with polyvinyl chloride film and displayed for 7 days. Instrumental color (L*, a*, and b*) decreased throughout simulated display (p = 0.0001). Increased usage rates of oat protein in patties resulted in greater cook yields (p = 0.0001). Objective measures of Allo-Kramer shear force values increased as oat protein inclusion rates increased (p = 0.0001). Oat protein can be incorporated in ground beef patties with positive effects on cook yield, but inclusion rate may have a deleterious impact on color and instrumental tenderness.
M. biceps femoris (BF), m. semimembranosus (SM) and m. semitendinosus (ST) from fresh pork ham were evaluated for characteristics of quality after cooking to an internal endpoint temperature of 62 °C or 73 °C. Fresh ham muscles from the left side (N = 68) were cut into 2.54 cm thick chops and allocated to cooking loss, Warner–Bratzler shear force (WBSF), pH and instrumental cooked color analysis. Cooking losses were greater (p < 0.0001) for SM and chops cooked to an internal temperature of 73 °C (p < 0.0001), whereas WBSF did not differ (p = 0.2509) among the three muscles, but was greater (p < 0.0001) in chops cooked to 73 °C. Fresh muscle’s pH was greater (p < 0.05) in ST than BF or SM. Lastly, the interactive effect (p < 0.05) of muscle × endpoint temperature for ST chops cooked to 73 °C was lighter (L*), but, when cooked to 62 °C, they were more red (a*), more yellow (b*) and incurred less color change from red to brown than BF or SM. The current results suggest it is plausible for BF, SM and ST to be considered for alternative uses instead of traditional value-added manufacturing.
Fresh surface color of beef remains a focus for consumers at the time of purchasing in the retail sector. The objective of this study was to evaluate instrumental surface color, expert color evaluation, and lipid oxidation (TBARS) on beef longissimus lumborum steaks packaged using recycle-ready film (RRF) or polyvinyl chloride overwrap (PVC). Paired strip loins (IMPS # 180), fabricated from beef carcasses (n = 7) 10 d postmortem, cut into 2.54 cm-thick steaks, and assigned to one of two packaging treatments RRF (OTR = 0.8 cc/m2/24 h) or PVC (OTR = 14,000 cc/m2/24 h). Steaks were stored under simulated retail conditions (3 °C ± 1.5 °C) in a LED (2297 lux) lighted, three-tiered retail cabinet, rotated daily among shelves for 35 days. From d 0 to 35 objective surface color was captured every 5 days to record changes in lightness (L*), redness (a*), yellowness (b*), Chroma, Hue Angle, and calculated values of spectral wavelengths (Red to Brown, Oxymyoglobin, Deoxymyoglobin, & Metmyoglobin) using a HunterLab colorimeter. Steaks packaged in RRF became lighter (L*) as display period increased (P < 0.05), whereas steaks packaged in PVC became darker (P < 0.05). Redness (a*) values were greatest (P < 0.05) for PVC steaks until day 5, whereas RRF steaks had greater (P < 0.05) surface redness from day 10 to 35 of the display period. Calculated spectral values red to brown were greater (P < 0.05) for steaks in RRF than PVC. Expert color evaluators rated RRF steaks having less browning and less discoloration (P < 0.05) from day 5 to 35 of display. Lipid oxidation was greater (P < 0.05) for PVC steaks from day 10 through day 35 of the display. These results suggest that the use of RRF vacuum packaging for beef steaks is plausible and can maintain surface color characteristics during extended display periods.
The impact of frozen storage on beef steaks prior to the retail setting may result in changes to the quality and safety of the packaged meat. Therefore, the objective of the current study was to evaluate fresh characteristics on previously frozen steaks during a simulated retail display. Steaks were allocated to one of three packaging treatments (MB, MDF, MFS) and stored frozen (−13 °C) for 25 days in the absence of light. After thawing, steaks were stored in a lighted retail case at 3 °C and evaluated for instrumental surface color, pH, purge loss, lipid oxidation, and microbial spoilage organisms throughout the 25-day fresh display period. There was an increase (p < 0.05) for aerobic plate counts and lipid oxidation from day 20 through 25 on steaks packaged in MFS and MDF, respectively. Steaks packaged in MB were redder (p < 0.05) and more vivid (C*) as storage time increased. Whereas lipid oxidation was greater (p < 0.05) throughout the entire display for steaks packaged in MFS and MDF. It is evident that barrier properties of MB limiting oxygen exposure of the steak preserved fresh meat characteristics after frozen storage. Results from the current study suggest that vacuum packaging films can aid in retarding detrimental effects caused by frozen storage after placing the steaks in fresh retail conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.