The promising structural properties of fiber-reinforced polymer composites make them widely popular in the energy, automotive, defense, and aerospace industries. One of the most challenging limitations associated with the use of composites in the above applications is the maintenance and repair protocols. In this study, a novel cold spray approach is introduced as an efficient alternative for the structural repair of fiber composites. Damages in the form of circular tapered holes are created in glass fiber-reinforced polymer (GFRP) composite substrates using a conventional drilling process. The in-lab created damages are repaired by cold spray with thermoplastic (nylon 6) and thermoset (polyester epoxy resin, PER) materials. The fundamental adhesion mechanisms are investigated through microstructural observations, which point to adiabatic shear instability due to the occurrence of severe plastic deformation as a governing factor. Microstructural examinations also suggest that no significant fiber damage or surface degradation occurs after the repair by cold spray. Mechanical tests performed on neat, damaged, and repaired composites reveal the partial recovery of structural performance and load-bearing capacity after cold spray repair. Results obtained in this work highlight cold spray as a promising alternative technique for onsite structural repair of composite structures with minimal pre/post-processing requirements.
Polymer cold spray has yielded lower deposition efficiency (DE) and quality deposits compared to metal cold spray. The disparity stems from metals being studied far longer than polymers in cold spray; in addition, polymers exhibit richer thermo-mechanical behavior. An experimental study was conducted to examine the effects of polymer feedstock degree of crystallinity (D) on cold sprayed deposits of polyetherketoneketone (PEKK), a thermoplastic used in aerospace and other high-performance applications. As deposition relies on the plastic deformation of the impacting particle, polymers with high D may inhibit deposition, reducing deposit quality and efficiency. This study evaluates three PEKK grades produced using different ratios of terephthalic (T) to isophthalic (I) monomer moieties (T/I = 60/40, 70/30, 80/20). The ratios control D, with higher proportions of T monomers corresponding to higher crystallization rates and degrees of crystallinity. A parametric study was completed to evaluate functional process set points of system carrier gas temperature and powder mass flow rate. Using operational parameters common among the PEKK grades, spray cycles were completed for each material and quantitative responses to variation in crystallinity were evaluated through a suite of analyses. DE of the materials was assessed gravimetrically, deposit porosity was evaluated by scanning electron microscopy, and thermophysical changes to the feedstock during the spray cycle were determined by differential scanning calorimetry. Overall, we found that cold spray processing of powders of lower D formed less porous deposits with a higher DE than more crystalline powders sprayed at the same process conditions. PEKK grades with lower T/I ratios achieved DEs in the range of 60-75%, whereas the most T enriched grade only reached ~10% DE.
This work investigates the cold spray deposition of thermoplastic powders on fiber-reinforced polymer−matrix composites using a combined experimental-computational approach. Cold spray deposition of nylon-6 powders on woven glass fiber-reinforced composite panels is successfully achieved by the proper identification of two critical process parameters, particle temperature and impact velocity. Experimental evaluations indicate that the bonding between the deposited nylon layers and the composite substrate is achieved primarily due to the concurrent severe plastic deformation of the powders and the surface epoxy layer on the substrate, leading to the development of acceptable bond strengths. Finite element simulations reveal the fundamental impact mechanics of the process while ensuring that the impact-induced damage to the reinforcing fibers can be minimal, provided that the cold spray process parameters are selected properly. Results presented herein highlight polymer cold spray as a promising surface coating and functionalization process applicable to polymer−matrix composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.