In this work, we investigate how the assumption of chemical equilibrium with leptons affects the deconfinement phase transition to quark matter. This is carried out within the framework of the Chiral Mean Field model allowing for nonzero net strangeness, corresponding to the conditions found in astrophysical scenarios. We build three-dimensional quantum chromodynamics phase diagrams with temperature, baryon chemical potential, and either charge or isospin fraction or chemical potential to show how the deconfinement region collapses to a line in the special case of chemical equilibrium, such as the one established in the interior of cold catalyzed neutron stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.