LOV (light-oxygen-voltage-sensitive) domains comprise the light-sensitive parts of many blue light photoreceptor proteins. Photoexcitation of the chromophore flavin mononucleotide (FMN) in these LOV domains leads to formation of a covalent adduct between FMN and a cysteine residue. So far, the electronically excited singlet and triplet states of FMN have been identified as the only intermediates in the photocycles of LOV domains from several organisms. Since many flavoproteins are redox-active, however, the photocycles of LOV domains might involve other redox states of FMN, and might be controlled by the external redox potential. Here we report on the redox properties of the LOV1 domain from phototropin of the green alga Chlamydomonas reinhardtii. By equilibrium-redox spectropotentiometry a redox potential [E(fq/fhq) (flavoquinone/flavohydroquinone)] of -290 mV vs. the normal hydrogen electrode (NHE) was determined for the wild-type domain (LOV1-wt). A similar value of -280 mV was found for the mutant LOV1-C57G, in which the photoreactive cysteine is replaced by glycine. The recovery kinetics (photoadduct-->ground state) in the photocycle of LOV1-wt are not influenced by a redox potential in the range between +500 and -260 mV versus NHE. No flavosemiquinone could be generated by chemical reduction with sodium dithionite. However, photoreduction of LOV1-C57G with EDTA leads exclusively to the flavosemiquinone. This semiquinone is stable against disproportionation, and the photoreduction is not mediated by free FMN.
Irradiation of the LOV1 domain from the blue-light photoreceptor phototropin of the green alga Chlamydomonas reinhardtii leads to the formation of a covalent adduct of the sulfur atom of cysteine 57 to the carbon C(4a) in the chromophore FMN. This reaction is not possible in the mutant LOV1-C57G in which this cysteine is replaced by glycine. Irradiation of LOV1-C57G in the absence of oxygen but in the presence of aliphatic mercaptans or thioethers leads to the formation of a species with an absorption maximum at 615 nm, which is identified as the neutral radical FMNH . When oxygen is admitted, the reaction is completely reversible. Irradiation of LOV1-C57G in the presence of methylmercaptan CH(3)SH under oxygen-free conditions yields, in addition to FMNH , a third species with a single absorption maximum at 379 nm. This species is stable against oxygen and is also formed when the irradiation is performed in the presence of oxygen. This species is assigned to the adduct between CH(3)SH and FMN. In aqueous solution the photoreaction of CH(3)SH with FMN leads to the fully reduced hydroquinone form FMNH(2) or its anion FMNH(-). Adduct formation apparently requires the protein cage. After formation, the adduct is stable for hours inside the protein, but decomposes immediately upon denaturation. The implications of these observations for the mechanism of adduct formation in wild type LOV domains are discussed.
Learning from nature: In nature, riboflavin binding proteins are responsible for the transport and release of riboflavin. Here, the development of a molecular photorelease system based on the riboflavin binding protein dodecin is presented. Any drug or active chemical linked to a flavin can be captured by dodecin and transported to a location of interest. Irradiation with blue light results in the release of the ligands.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.