Accurate and complete genome sequences are essential in biotechnology to facilitate genome-based cell engineering efforts. The current genome assemblies for Cricetulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and misassemblies, consistent with most short-read based assemblies. Here, we completely resequenced C. griseus using Single Molecule Real Time (SMRT) sequencing and merged this with Illumina-based assemblies. This generated a more contiguous and complete genome assembly than either technology alone, reducing the number of scaffolds by >28-fold, with 90% of the sequence in the 122 longest scaffolds. Most genes are now found in single scaffolds, including up- and downstream regulatory elements, enabling improved study of noncoding regions. With >95% of the gap sequence filled, important CHO cell mutations have been detected in draft assembly gaps. This new assembly will be an invaluable resource for continued basic and pharmaceutical research.
Herpes simplex virus (HSV) is a new platform for gene therapy. We cloned the human herpesvirus HSV-1 strain F genome into a bacterial artificial chromosome (BAC) and adapted chromosomal gene replacement technology to manipulate the viral genome. This technology exploits the power of bacterial genetics and permits generation of recombinant viruses in as few as 7 days. We utilized this technology to delete the viral packaging/cleavage (pac) sites from HSV-BAC. HSV-BAC DNA is stable in bacteria and the pac-deleted HSV-BAC (p45-25) is able to package amplicon plasmid DNA as efficiently as a comparable pac-deleted HSV cosmid set when transfected into mammalian cells. Moreover, the utility of bacterial gene replacement is not limited to HSV, since most herpesviruses can be cloned as BACs. Thus, this technology will greatly facilitate genetic manipulation of all herpesviruses for their use as research tools or as vectors in gene therapy.
The Chinese hamster genome serves as a reference genome for the study of Chinese hamster ovary (CHO) cells, the preferred host system for biopharmaceutical production.Recent re-sequencing of the Chinese hamster genome resulted in the RefSeq PICR metaassembly, a set of highly accurate scaffolds that filled over 95% of the gaps in previous assembly versions. However, these scaffolds did not reach chromosome-scale due to the absence of long-range scaffolding information during the meta-assembly process. Here,
Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.