The NMDA receptor antagonist ketamine can induce a rapid improvement in depressive symptoms that often endures for days after a single intravenous dose. The pharmacodynamic basis for this effect is poorly understood. Using a proton magnetic resonance spectroscopy ([ 1 H]-MRS) method that previously detected a normalization of amino acid neurotransmitter (AANt) content after chronic treatment with conventional antidepressant treatments, we examined whether the acute action of ketamine is associated with alterations in AANt content as well. Ten subjects with major depressive disorder (MDD) received saline, then ketamine in a fixed order, one week apart, under single-blind conditions. Each infusion was associated with three [ 1 H] MRS scans (baseline, 3 hours and 48 hours post-infusion) that measured glutamate, GABA and glutamine within the occipital cortex. Rating scales were administered before, during and after each infusion. The rapid (1 hour) and sustained (at least 7 days) antidepressant effect we observed after ketamine infusion was not associated with either baseline measures of, or changes in, occipital AANt content. Dissociative symptoms were not correlated with changes in depression scores. While our results indicate that changes in occipital AANt content are not a correlate of ketamine's antidepressant action, this may only apply to the regional and temporal windows of our MRS measurements.
Objective Emerging evidence suggests abnormalities in amino acid neurotransmitter function and impaired energy metabolism contribute to the underlying pathophysiology of Major Depressive Disorder (MDD). To test whether impairments in energetics and glutamate neurotransmitter cycling are present in MDD we used in vivo 13C magnetic resonance spectroscopy (13C MRS) to measure these fluxes in individuals diagnosed with MDD relative to non-depressed subjects. Method 1H MRS and 13C MRS data were collected on 23 medication-free MDD and 17 healthy subjects. 1H MRS provided total glutamate and GABA concentrations, and 13C MRS, coupled with intravenous infusion of [1-13C]-glucose, provided measures of the neuronal tricarboxylic acid cycle (VTCAN) for mitochondrial energy production, GABA synthesis, and glutamate/glutamine cycling, from voxels placed in the occipital cortex. Results Our main finding was that mitochondrial energy production of glutamatergic neurons was reduced by 26% in MDD subjects (t = 2.57, p = 0.01). Paradoxically we found no difference in the rate of glutamate/glutamine cycle (Vcycle). We also found a significant correlation between glutamate concentrations and Vcycle considering the total sample. Conclusions We interpret the reduction in mitochondrial energy production as being due to either mitochondrial dysfunction or a reduction in proper neuronal input or synaptic strength. Future MRS studies could help distinguish these possibilities.
Objectives Studies now provide strong evidence that the NMDA receptor antagonist ketamine possesses rapidly acting antidepressant properties. This study aimed to determine if low dose ketamine could be used to expedite and augment the antidepressant effects of electroconvulsive therapy treatments in patients experiencing a severe depressive episode. Methods Subjects with major depressive disorder or bipolar disorder referred for ECT treatment of a major depressive episode were randomized to receive thiopental alone or thiopental plus ketamine (0.5 mg/kg) for anesthesia prior to each ECT session. Hamilton Depression Rating Scales (HDRS) were administered at baseline, and 24 – 72 h following the 1st and the 6th ECT sessions. Results ECT exerted a significant antidepressant effect in both groups (F(2,24) = 14.35, p < .001). However, there was no significant group effect or group-by-time interaction on HDRS scores. Additionally, post-hoc analyses of the time effect on HDRS showed no significant HDRS reduction after the 1st ECT session for either group. Conclusions The results of this pilot study suggest that ketamine, at a dose of 0.5 mg/kg, given just prior to ECT, did not enhance the antidepressant effect of ECT. Interestingly, the results further suggest that the co-administration of ketamine with a barbiturate anesthetic and ECT may attenuate the acute antidepressant effects of NMDA antagonist.
Introduction: Ketamine has shown rapid though short-lived antidepressant effects. The possibility of concerning neurobiological changes following repeated exposure to the drug motivates the development of strategies that obviate or minimize the need for longer-term treatment with ketamine. In this open-label trial, we investigated whether cognitive behavioral therapy (CBT) can sustain or extend ketamine's antidepressant effects. Methods: Patients who were pursuing ketamine infusion therapy for treatment-resistant depression were invited to participate in the study. If enrolled, the subjects initiated a 12-session, 10-week course of CBT concurrently with a short 4-treatment, 2-week course of intravenous ketamine (0.5 mg/kg infused over 40 min) provided under a standardized clinical protocol. Results: Sixteen participants initiated the protocol, with 8 (50%) attaining a response to the ketamine and 7 (43.8%) achieving remission during the first 2 weeks of protocol. Among ketamine responders, the relapse rate at the end of the CBT course (8 weeks following the last ketamine exposure) was 25% (2/8). On longer-term follow-up, 5 of 8 subjects eventually relapsed, the median time to relapse being 12 weeks following ketamine exposure. Among ketamine remitters, 3 of 7 retained remission until at least 4 weeks following the last ketamine exposure, with 2 retaining remission through 8 weeks following ketamine exposure. Ketamine nonresponders did not appear to benefit from CBT. Conclusions: CBT may sustain the antidepressant effects of ketamine in treatment-resistant depression. Well-powered randomized controlled trials are warranted to further investigate this treatment combination as a way to sustain ketamine's antidepressant effects.
Increased GABA levels in persons with insomnia may reflect an allostatic response to chronic hyperarousal. The preserved, negative relationship between GABA and time awake after sleep onset supports this notion, indicating that the possible allostatic response is adaptive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.